Normalized defining polynomial
\( x^{17} - x^{16} - 48 x^{15} + 105 x^{14} + 763 x^{13} - 2579 x^{12} - 3653 x^{11} + 23311 x^{10} - 11031 x^{9} - 74838 x^{8} + 107759 x^{7} + 50288 x^{6} - 198615 x^{5} + 102976 x^{4} + 58507 x^{3} - 75722 x^{2} + 25763 x - 2837 \)
Invariants
| Degree: | $17$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[17, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(160470643909878751793805444097921=103^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $78.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $103$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(103\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{103}(64,·)$, $\chi_{103}(1,·)$, $\chi_{103}(66,·)$, $\chi_{103}(8,·)$, $\chi_{103}(9,·)$, $\chi_{103}(76,·)$, $\chi_{103}(13,·)$, $\chi_{103}(14,·)$, $\chi_{103}(79,·)$, $\chi_{103}(81,·)$, $\chi_{103}(23,·)$, $\chi_{103}(93,·)$, $\chi_{103}(30,·)$, $\chi_{103}(34,·)$, $\chi_{103}(100,·)$, $\chi_{103}(72,·)$, $\chi_{103}(61,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{7003} a^{15} + \frac{111}{7003} a^{14} - \frac{1548}{7003} a^{13} + \frac{3015}{7003} a^{12} - \frac{205}{7003} a^{11} + \frac{1487}{7003} a^{10} + \frac{14}{149} a^{9} - \frac{3045}{7003} a^{8} - \frac{2250}{7003} a^{7} + \frac{1069}{7003} a^{6} - \frac{2040}{7003} a^{5} - \frac{1044}{7003} a^{4} + \frac{2698}{7003} a^{3} - \frac{1245}{7003} a^{2} - \frac{332}{7003} a - \frac{1949}{7003}$, $\frac{1}{99752558263349} a^{16} + \frac{5380907932}{99752558263349} a^{15} - \frac{41954299176573}{99752558263349} a^{14} + \frac{22438092102485}{99752558263349} a^{13} + \frac{12225557661206}{99752558263349} a^{12} - \frac{46521131883065}{99752558263349} a^{11} - \frac{2461007305771}{99752558263349} a^{10} - \frac{7841565362988}{99752558263349} a^{9} + \frac{38136997848232}{99752558263349} a^{8} - \frac{3050863650300}{99752558263349} a^{7} + \frac{30138440774556}{99752558263349} a^{6} - \frac{48074873263192}{99752558263349} a^{5} - \frac{5871606948884}{99752558263349} a^{4} - \frac{489656773295}{2122394856667} a^{3} + \frac{28542809263483}{99752558263349} a^{2} - \frac{23350746439877}{99752558263349} a - \frac{3282112036992}{99752558263349}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 30768108227.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 17 |
| The 17 conjugacy class representatives for $C_{17}$ |
| Character table for $C_{17}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{17}$ | $17$ | $17$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 103 | Data not computed | ||||||