Normalized defining polynomial
\( x^{17} - x^{16} - 64 x^{15} + 43 x^{14} + 1478 x^{13} - 932 x^{12} - 16008 x^{11} + 12183 x^{10} + 86347 x^{9} - 84507 x^{8} - 213223 x^{7} + 271237 x^{6} + 152800 x^{5} - 314540 x^{4} + 100605 x^{3} + 20132 x^{2} - 13981 x + 1681 \)
Invariants
| Degree: | $17$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[17, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15400296222263289476715621650663041=137^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $102.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $137$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(137\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{137}(1,·)$, $\chi_{137}(133,·)$, $\chi_{137}(72,·)$, $\chi_{137}(73,·)$, $\chi_{137}(74,·)$, $\chi_{137}(16,·)$, $\chi_{137}(88,·)$, $\chi_{137}(34,·)$, $\chi_{137}(59,·)$, $\chi_{137}(38,·)$, $\chi_{137}(50,·)$, $\chi_{137}(115,·)$, $\chi_{137}(119,·)$, $\chi_{137}(56,·)$, $\chi_{137}(122,·)$, $\chi_{137}(123,·)$, $\chi_{137}(60,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{37} a^{14} + \frac{2}{37} a^{12} + \frac{4}{37} a^{11} - \frac{14}{37} a^{10} + \frac{13}{37} a^{9} + \frac{11}{37} a^{8} + \frac{10}{37} a^{7} + \frac{7}{37} a^{6} - \frac{5}{37} a^{5} + \frac{18}{37} a^{4} - \frac{17}{37} a^{3} - \frac{3}{37} a^{2} - \frac{16}{37} a + \frac{4}{37}$, $\frac{1}{192659} a^{15} + \frac{2389}{192659} a^{14} - \frac{69632}{192659} a^{13} + \frac{82408}{192659} a^{12} + \frac{93458}{192659} a^{11} + \frac{17664}{192659} a^{10} + \frac{48606}{192659} a^{9} + \frac{49007}{192659} a^{8} + \frac{53978}{192659} a^{7} - \frac{35822}{192659} a^{6} - \frac{56623}{192659} a^{5} + \frac{86016}{192659} a^{4} - \frac{81908}{192659} a^{3} + \frac{70406}{192659} a^{2} + \frac{89356}{192659} a - \frac{53}{4699}$, $\frac{1}{458898274030885187123794199} a^{16} + \frac{572440381749563032811}{458898274030885187123794199} a^{15} + \frac{2592881780188347973655989}{458898274030885187123794199} a^{14} + \frac{142598118890034976961805060}{458898274030885187123794199} a^{13} + \frac{201155069052146647609332577}{458898274030885187123794199} a^{12} + \frac{226640544427017209931643033}{458898274030885187123794199} a^{11} + \frac{53208007998762935330093268}{458898274030885187123794199} a^{10} + \frac{36630608149021303226057121}{458898274030885187123794199} a^{9} + \frac{4539730493443987031589180}{12402656054888788841183627} a^{8} - \frac{166557196393640177095302289}{458898274030885187123794199} a^{7} + \frac{75327462266327090333963102}{458898274030885187123794199} a^{6} + \frac{50447121900504534961971255}{458898274030885187123794199} a^{5} - \frac{69845522159501561050478729}{458898274030885187123794199} a^{4} - \frac{62293975850374962848445315}{458898274030885187123794199} a^{3} + \frac{145289994810479287329603563}{458898274030885187123794199} a^{2} - \frac{211104461552108828961525495}{458898274030885187123794199} a + \frac{2708266844777972937222048}{11192640830021589929848639}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 559957546560 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 17 |
| The 17 conjugacy class representatives for $C_{17}$ |
| Character table for $C_{17}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{17}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{17}$ | $17$ | $17$ | $17$ | $17$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 137 | Data not computed | ||||||