Normalized defining polynomial
\( x^{17} - x^{16} + 4 x^{15} - 18 x^{14} + 11 x^{13} + 14 x^{12} + 21 x^{11} - 62 x^{10} + 14 x^{9} + 50 x^{8} + 54 x^{7} - 121 x^{6} - 7 x^{5} + 36 x^{4} + 64 x^{3} - 23 x^{2} + 43 x + 1 \)
Invariants
| Degree: | $17$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(930227631978098127294721=991^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $991$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{9} a^{12} + \frac{1}{9} a^{11} - \frac{1}{9} a^{10} + \frac{1}{9} a^{9} - \frac{1}{9} a^{7} + \frac{1}{9} a^{6} - \frac{1}{9} a^{5} - \frac{2}{9} a^{3} + \frac{2}{9} a^{2} - \frac{2}{9} a + \frac{1}{9}$, $\frac{1}{63} a^{13} - \frac{1}{63} a^{12} + \frac{1}{7} a^{11} - \frac{2}{21} a^{10} - \frac{5}{63} a^{9} - \frac{1}{63} a^{8} + \frac{1}{7} a^{7} + \frac{17}{63} a^{5} - \frac{26}{63} a^{4} + \frac{1}{7} a^{3} + \frac{8}{21} a^{2} - \frac{4}{63} a - \frac{17}{63}$, $\frac{1}{63} a^{14} + \frac{1}{63} a^{12} - \frac{4}{63} a^{11} - \frac{4}{63} a^{10} + \frac{8}{63} a^{9} + \frac{8}{63} a^{8} - \frac{5}{63} a^{7} + \frac{31}{63} a^{6} - \frac{23}{63} a^{5} + \frac{4}{63} a^{4} + \frac{26}{63} a^{3} + \frac{3}{7} a^{2} + \frac{2}{9} a - \frac{1}{21}$, $\frac{1}{63} a^{15} - \frac{1}{21} a^{12} + \frac{8}{63} a^{11} - \frac{1}{9} a^{10} - \frac{8}{63} a^{9} - \frac{4}{63} a^{8} + \frac{1}{63} a^{7} - \frac{2}{63} a^{6} + \frac{29}{63} a^{5} + \frac{10}{63} a^{4} - \frac{8}{21} a^{3} - \frac{31}{63} a^{2} + \frac{1}{63} a - \frac{25}{63}$, $\frac{1}{929061441} a^{16} + \frac{674213}{309687147} a^{15} + \frac{106045}{929061441} a^{14} - \frac{4358033}{929061441} a^{13} + \frac{13622674}{309687147} a^{12} - \frac{13836964}{929061441} a^{11} - \frac{2470456}{132723063} a^{10} - \frac{10593104}{103229049} a^{9} + \frac{18158150}{929061441} a^{8} + \frac{23823571}{929061441} a^{7} + \frac{28153693}{929061441} a^{6} - \frac{26253538}{103229049} a^{5} - \frac{80177674}{929061441} a^{4} + \frac{523508}{3428271} a^{3} + \frac{42304928}{309687147} a^{2} - \frac{252479222}{929061441} a - \frac{25772827}{929061441}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 323467.453718 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 34 |
| The 10 conjugacy class representatives for $D_{17}$ |
| Character table for $D_{17}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $17$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | $17$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | $17$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $17$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $17$ | $17$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | $17$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | $17$ | $17$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 991 | Data not computed | ||||||