magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-74, 382, -776, 668, 520, -1084, -764, 484, 1238, 714, 16, -36, -6, 54, 2, -4, -1, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^17 - x^16 - 4*x^15 + 2*x^14 + 54*x^13 - 6*x^12 - 36*x^11 + 16*x^10 + 714*x^9 + 1238*x^8 + 484*x^7 - 764*x^6 - 1084*x^5 + 520*x^4 + 668*x^3 - 776*x^2 + 382*x - 74)
gp: K = bnfinit(x^17 - x^16 - 4*x^15 + 2*x^14 + 54*x^13 - 6*x^12 - 36*x^11 + 16*x^10 + 714*x^9 + 1238*x^8 + 484*x^7 - 764*x^6 - 1084*x^5 + 520*x^4 + 668*x^3 - 776*x^2 + 382*x - 74, 1)
\( x^{17} - x^{16} - 4 x^{15} + 2 x^{14} + 54 x^{13} - 6 x^{12} - 36 x^{11} + 16 x^{10} + 714 x^{9} + 1238 x^{8} + 484 x^{7} - 764 x^{6} - 1084 x^{5} + 520 x^{4} + 668 x^{3} - 776 x^{2} + 382 x - 74 \)
magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
| Degree: | | $17$ |
|
| Signature: | | $[1, 8]$ |
|
| Discriminant: | | \(861526607800060221948166144=2^{30}\cdot 173^{8}\) | magma: Discriminant(Integers(K));
|
| Root discriminant: | | $38.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
|
| Ramified primes: | | $2, 173$ | magma: PrimeDivisors(Discriminant(Integers(K)));
gp: factor(abs(K.disc))[,1]~
|
| This field is not Galois over $\Q$. |
| This is not a CM field. |
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{518449026921810234250726519} a^{16} - \frac{2903744299660867300931161}{518449026921810234250726519} a^{15} - \frac{145515969622780446567758039}{518449026921810234250726519} a^{14} + \frac{87449486712529578111145685}{518449026921810234250726519} a^{13} + \frac{90388261689503535099965497}{518449026921810234250726519} a^{12} + \frac{213755840339945972595489008}{518449026921810234250726519} a^{11} + \frac{72953974012171598161596854}{518449026921810234250726519} a^{10} + \frac{3137750212693082994430496}{518449026921810234250726519} a^{9} + \frac{256458172663421001979231745}{518449026921810234250726519} a^{8} - \frac{49611598799627003593660391}{518449026921810234250726519} a^{7} - \frac{27387611796406411645447552}{518449026921810234250726519} a^{6} + \frac{222961449395058127219738606}{518449026921810234250726519} a^{5} - \frac{63208606884273117780803614}{518449026921810234250726519} a^{4} + \frac{148709660332780900942449817}{518449026921810234250726519} a^{3} + \frac{30151660364221902163647120}{518449026921810234250726519} a^{2} + \frac{225255761602774742093792238}{518449026921810234250726519} a + \frac{1081393905446205624367037}{518449026921810234250726519}$
$C_{15}$, which has order $15$
(assuming GRH)
sage: K.class_group().invariants()
magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
| Rank: | | $8$
|
|
| Torsion generator: | | \( -1 \) (order $2$)
| magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
|
| Fundamental units: | | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
(assuming GRH)
| magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
|
| Regulator: | | \( 781146.759847 \)
(assuming GRH)
|
|
$\PSL(2,16)$ (as 17T6):
sage: K.galois_group(type='pari')
|
The extension is primitive: there are no intermediate fields
between this field and $\Q$.
|
| $p$ |
2 |
3 |
5 |
7 |
11 |
13 |
17 |
19 |
23 |
29 |
31 |
37 |
41 |
43 |
47 |
53 |
59 |
| Cycle type |
R |
$17$ |
$17$ |
$17$ |
$17$ |
$15{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ |
$17$ |
$17$ |
$15{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ |
$15{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ |
$15{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ |
${\href{/LocalNumberField/37.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ |
$15{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ |
$17$ |
$17$ |
${\href{/LocalNumberField/53.3.0.1}{3} }^{5}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ |
${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime.
Cycle lengths which are repeated in a cycle type are indicated by
exponents.
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
|
Label |
Dimension |
Conductor |
Defining polynomial of Artin field |
$G$ |
Ind |
$\chi(c)$ |
|
*
| 1.1.1t1.1c1 | $1$ |
$1$ |
$x$ |
$C_1$ |
$1$ |
$1$ |
|
| 15.2e30_173e8.240.1c1 | $15$ |
$ 2^{30} \cdot 173^{8}$ |
$x^{17} - x^{16} - 4 x^{15} + 2 x^{14} + 54 x^{13} - 6 x^{12} - 36 x^{11} + 16 x^{10} + 714 x^{9} + 1238 x^{8} + 484 x^{7} - 764 x^{6} - 1084 x^{5} + 520 x^{4} + 668 x^{3} - 776 x^{2} + 382 x - 74$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$-1$ |
|
| 15.2e30_173e8.240.1c2 | $15$ |
$ 2^{30} \cdot 173^{8}$ |
$x^{17} - x^{16} - 4 x^{15} + 2 x^{14} + 54 x^{13} - 6 x^{12} - 36 x^{11} + 16 x^{10} + 714 x^{9} + 1238 x^{8} + 484 x^{7} - 764 x^{6} - 1084 x^{5} + 520 x^{4} + 668 x^{3} - 776 x^{2} + 382 x - 74$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$-1$ |
|
| 15.2e30_173e8.240.1c3 | $15$ |
$ 2^{30} \cdot 173^{8}$ |
$x^{17} - x^{16} - 4 x^{15} + 2 x^{14} + 54 x^{13} - 6 x^{12} - 36 x^{11} + 16 x^{10} + 714 x^{9} + 1238 x^{8} + 484 x^{7} - 764 x^{6} - 1084 x^{5} + 520 x^{4} + 668 x^{3} - 776 x^{2} + 382 x - 74$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$-1$ |
|
| 15.2e30_173e8.240.1c4 | $15$ |
$ 2^{30} \cdot 173^{8}$ |
$x^{17} - x^{16} - 4 x^{15} + 2 x^{14} + 54 x^{13} - 6 x^{12} - 36 x^{11} + 16 x^{10} + 714 x^{9} + 1238 x^{8} + 484 x^{7} - 764 x^{6} - 1084 x^{5} + 520 x^{4} + 668 x^{3} - 776 x^{2} + 382 x - 74$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$-1$ |
|
| 15.2e30_173e8.240.1c5 | $15$ |
$ 2^{30} \cdot 173^{8}$ |
$x^{17} - x^{16} - 4 x^{15} + 2 x^{14} + 54 x^{13} - 6 x^{12} - 36 x^{11} + 16 x^{10} + 714 x^{9} + 1238 x^{8} + 484 x^{7} - 764 x^{6} - 1084 x^{5} + 520 x^{4} + 668 x^{3} - 776 x^{2} + 382 x - 74$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$-1$ |
|
| 15.2e30_173e8.240.1c6 | $15$ |
$ 2^{30} \cdot 173^{8}$ |
$x^{17} - x^{16} - 4 x^{15} + 2 x^{14} + 54 x^{13} - 6 x^{12} - 36 x^{11} + 16 x^{10} + 714 x^{9} + 1238 x^{8} + 484 x^{7} - 764 x^{6} - 1084 x^{5} + 520 x^{4} + 668 x^{3} - 776 x^{2} + 382 x - 74$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$-1$ |
|
| 15.2e30_173e8.240.1c7 | $15$ |
$ 2^{30} \cdot 173^{8}$ |
$x^{17} - x^{16} - 4 x^{15} + 2 x^{14} + 54 x^{13} - 6 x^{12} - 36 x^{11} + 16 x^{10} + 714 x^{9} + 1238 x^{8} + 484 x^{7} - 764 x^{6} - 1084 x^{5} + 520 x^{4} + 668 x^{3} - 776 x^{2} + 382 x - 74$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$-1$ |
|
| 15.2e30_173e8.240.1c8 | $15$ |
$ 2^{30} \cdot 173^{8}$ |
$x^{17} - x^{16} - 4 x^{15} + 2 x^{14} + 54 x^{13} - 6 x^{12} - 36 x^{11} + 16 x^{10} + 714 x^{9} + 1238 x^{8} + 484 x^{7} - 764 x^{6} - 1084 x^{5} + 520 x^{4} + 668 x^{3} - 776 x^{2} + 382 x - 74$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$-1$ |
|
*
| 16.2e30_173e8.17t6.1c1 | $16$ |
$ 2^{30} \cdot 173^{8}$ |
$x^{17} - x^{16} - 4 x^{15} + 2 x^{14} + 54 x^{13} - 6 x^{12} - 36 x^{11} + 16 x^{10} + 714 x^{9} + 1238 x^{8} + 484 x^{7} - 764 x^{6} - 1084 x^{5} + 520 x^{4} + 668 x^{3} - 776 x^{2} + 382 x - 74$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$0$ |
|
| 17.2e30_173e8.51.1c1 | $17$ |
$ 2^{30} \cdot 173^{8}$ |
$x^{17} - x^{16} - 4 x^{15} + 2 x^{14} + 54 x^{13} - 6 x^{12} - 36 x^{11} + 16 x^{10} + 714 x^{9} + 1238 x^{8} + 484 x^{7} - 764 x^{6} - 1084 x^{5} + 520 x^{4} + 668 x^{3} - 776 x^{2} + 382 x - 74$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$1$ |
|
| 17.2e30_173e8.68.1c1 | $17$ |
$ 2^{30} \cdot 173^{8}$ |
$x^{17} - x^{16} - 4 x^{15} + 2 x^{14} + 54 x^{13} - 6 x^{12} - 36 x^{11} + 16 x^{10} + 714 x^{9} + 1238 x^{8} + 484 x^{7} - 764 x^{6} - 1084 x^{5} + 520 x^{4} + 668 x^{3} - 776 x^{2} + 382 x - 74$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$1$ |
|
| 17.2e30_173e8.68.1c2 | $17$ |
$ 2^{30} \cdot 173^{8}$ |
$x^{17} - x^{16} - 4 x^{15} + 2 x^{14} + 54 x^{13} - 6 x^{12} - 36 x^{11} + 16 x^{10} + 714 x^{9} + 1238 x^{8} + 484 x^{7} - 764 x^{6} - 1084 x^{5} + 520 x^{4} + 668 x^{3} - 776 x^{2} + 382 x - 74$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$1$ |
|
| 17.2e30_173e8.120.1c1 | $17$ |
$ 2^{30} \cdot 173^{8}$ |
$x^{17} - x^{16} - 4 x^{15} + 2 x^{14} + 54 x^{13} - 6 x^{12} - 36 x^{11} + 16 x^{10} + 714 x^{9} + 1238 x^{8} + 484 x^{7} - 764 x^{6} - 1084 x^{5} + 520 x^{4} + 668 x^{3} - 776 x^{2} + 382 x - 74$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$1$ |
|
| 17.2e30_173e8.120.1c2 | $17$ |
$ 2^{30} \cdot 173^{8}$ |
$x^{17} - x^{16} - 4 x^{15} + 2 x^{14} + 54 x^{13} - 6 x^{12} - 36 x^{11} + 16 x^{10} + 714 x^{9} + 1238 x^{8} + 484 x^{7} - 764 x^{6} - 1084 x^{5} + 520 x^{4} + 668 x^{3} - 776 x^{2} + 382 x - 74$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$1$ |
|
| 17.2e30_173e8.120.1c3 | $17$ |
$ 2^{30} \cdot 173^{8}$ |
$x^{17} - x^{16} - 4 x^{15} + 2 x^{14} + 54 x^{13} - 6 x^{12} - 36 x^{11} + 16 x^{10} + 714 x^{9} + 1238 x^{8} + 484 x^{7} - 764 x^{6} - 1084 x^{5} + 520 x^{4} + 668 x^{3} - 776 x^{2} + 382 x - 74$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$1$ |
|
| 17.2e30_173e8.120.1c4 | $17$ |
$ 2^{30} \cdot 173^{8}$ |
$x^{17} - x^{16} - 4 x^{15} + 2 x^{14} + 54 x^{13} - 6 x^{12} - 36 x^{11} + 16 x^{10} + 714 x^{9} + 1238 x^{8} + 484 x^{7} - 764 x^{6} - 1084 x^{5} + 520 x^{4} + 668 x^{3} - 776 x^{2} + 382 x - 74$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$1$ |
Data is given for all irreducible
representations of the Galois group for the Galois closure
of this field. Those marked with * are summands in the
permutation representation coming from this field. Representations
which appear with multiplicity greater than one are indicated
by exponents on the *.