Normalized defining polynomial
\( x^{17} - 2 x^{16} + 9 x^{15} - 23 x^{14} + 59 x^{13} - 112 x^{12} + 156 x^{11} - 49 x^{10} + 221 x^{9} - 25 x^{8} - 162 x^{7} - 4 x^{6} + 553 x^{5} + 1435 x^{4} + 1716 x^{3} + 1462 x^{2} + 615 x + 225 \)
Invariants
| Degree: | $17$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(58497592625273225470725121=1663^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $1663$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{21} a^{11} + \frac{2}{21} a^{10} - \frac{2}{21} a^{9} + \frac{3}{7} a^{8} - \frac{1}{7} a^{7} + \frac{1}{7} a^{6} + \frac{2}{7} a^{5} - \frac{3}{7} a^{4} - \frac{4}{21} a^{3} - \frac{5}{21} a^{2} - \frac{1}{21} a + \frac{3}{7}$, $\frac{1}{21} a^{12} + \frac{1}{21} a^{10} - \frac{1}{21} a^{9} + \frac{3}{7} a^{7} - \frac{1}{3} a^{4} + \frac{1}{7} a^{3} + \frac{2}{21} a^{2} + \frac{4}{21} a + \frac{1}{7}$, $\frac{1}{21} a^{13} - \frac{1}{7} a^{10} + \frac{2}{21} a^{9} + \frac{1}{7} a^{7} - \frac{1}{7} a^{6} + \frac{8}{21} a^{5} - \frac{3}{7} a^{4} + \frac{2}{7} a^{3} + \frac{3}{7} a^{2} + \frac{4}{21} a - \frac{3}{7}$, $\frac{1}{105} a^{14} + \frac{2}{105} a^{13} - \frac{1}{105} a^{12} + \frac{2}{105} a^{11} + \frac{1}{21} a^{10} + \frac{2}{105} a^{9} - \frac{12}{35} a^{8} + \frac{1}{5} a^{7} + \frac{38}{105} a^{6} - \frac{26}{105} a^{5} - \frac{10}{21} a^{4} + \frac{19}{105} a^{3} - \frac{26}{105} a^{2} + \frac{4}{105} a + \frac{3}{7}$, $\frac{1}{315} a^{15} - \frac{1}{315} a^{14} - \frac{1}{45} a^{13} - \frac{1}{315} a^{11} + \frac{52}{315} a^{10} - \frac{2}{315} a^{9} + \frac{8}{105} a^{8} + \frac{1}{9} a^{7} - \frac{1}{9} a^{6} + \frac{19}{45} a^{5} + \frac{11}{35} a^{4} - \frac{14}{45} a^{3} + \frac{2}{315} a^{2} + \frac{83}{315} a - \frac{10}{21}$, $\frac{1}{621500650885485} a^{16} + \frac{7512315506}{88785807269355} a^{15} + \frac{130614479333}{621500650885485} a^{14} - \frac{446711379343}{41433376725699} a^{13} + \frac{279502235714}{12683686752765} a^{12} + \frac{4266351704}{183063520143} a^{11} + \frac{40188942280804}{621500650885485} a^{10} - \frac{1216593563974}{69055627876165} a^{9} + \frac{75376096973189}{621500650885485} a^{8} + \frac{196803201298633}{621500650885485} a^{7} - \frac{208227430263023}{621500650885485} a^{6} + \frac{16245006096862}{41433376725699} a^{5} - \frac{35586115088516}{621500650885485} a^{4} + \frac{57728372863951}{124300130177097} a^{3} - \frac{232377545045389}{621500650885485} a^{2} - \frac{28320475462726}{69055627876165} a - \frac{805141343915}{13811125575233}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3798575.81941 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 34 |
| The 10 conjugacy class representatives for $D_{17}$ |
| Character table for $D_{17}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $17$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | $17$ | $17$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $17$ | $17$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $17$ | $17$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | $17$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 1663 | Data not computed | ||||||