Normalized defining polynomial
\( x^{17} - 5 x^{16} + 40 x^{15} - 140 x^{14} + 610 x^{13} - 1622 x^{12} + 4870 x^{11} - 10220 x^{10} + 22720 x^{9} - 38080 x^{8} + 63500 x^{7} - 84100 x^{6} + 102200 x^{5} - 102400 x^{4} + 83000 x^{3} - 55864 x^{2} + 24080 x - 9400 \)
Invariants
| Degree: | $17$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(544810062656250000000000000000=2^{16}\cdot 3^{20}\cdot 5^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{6} a^{8} - \frac{1}{6} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{18} a^{9} - \frac{1}{6} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a + \frac{1}{9}$, $\frac{1}{18} a^{10} - \frac{1}{6} a^{6} - \frac{1}{3} a^{3} + \frac{4}{9} a$, $\frac{1}{18} a^{11} - \frac{1}{6} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{4}{9} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{108} a^{12} - \frac{1}{36} a^{11} + \frac{1}{54} a^{9} + \frac{1}{18} a^{7} - \frac{1}{9} a^{4} - \frac{7}{27} a^{3} + \frac{1}{9} a^{2} - \frac{1}{9} a - \frac{5}{27}$, $\frac{1}{108} a^{13} - \frac{1}{36} a^{11} + \frac{1}{54} a^{10} + \frac{1}{18} a^{8} - \frac{1}{6} a^{6} - \frac{1}{9} a^{5} + \frac{11}{27} a^{4} - \frac{1}{3} a^{2} + \frac{4}{27} a$, $\frac{1}{108} a^{14} - \frac{1}{108} a^{11} + \frac{1}{18} a^{6} + \frac{2}{27} a^{5} + \frac{1}{3} a^{4} - \frac{1}{9} a^{3} + \frac{7}{27} a^{2} - \frac{1}{9}$, $\frac{1}{108} a^{15} - \frac{1}{36} a^{11} + \frac{1}{54} a^{9} - \frac{1}{18} a^{7} - \frac{5}{54} a^{6} - \frac{2}{9} a^{4} + \frac{4}{9} a^{2} + \frac{4}{9} a + \frac{13}{27}$, $\frac{1}{2700} a^{16} + \frac{1}{540} a^{15} - \frac{1}{270} a^{14} + \frac{1}{270} a^{13} + \frac{1}{270} a^{12} + \frac{7}{675} a^{11} - \frac{1}{54} a^{10} + \frac{1}{90} a^{9} - \frac{1}{15} a^{8} + \frac{1}{135} a^{7} + \frac{5}{54} a^{6} + \frac{1}{27} a^{5} + \frac{11}{27} a^{4} + \frac{11}{27} a^{3} + \frac{8}{27} a^{2} - \frac{241}{675} a - \frac{2}{15}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1736565212.05 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$\PSL(2,16):C_4$ (as 17T8):
| A non-solvable group of order 16320 |
| The 17 conjugacy class representatives for $\PSL(2,16):C_4$ |
| Character table for $\PSL(2,16):C_4$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $15{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | $15{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | $17$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.5.7.1 | $x^{5} + 15 x^{3} + 5$ | $5$ | $1$ | $7$ | $F_5$ | $[7/4]_{4}$ | |
| 5.10.15.1 | $x^{10} - 10 x^{6} + 5$ | $10$ | $1$ | $15$ | $F_5$ | $[7/4]_{4}$ | |