Normalized defining polynomial
\( x^{17} - x^{16} - x^{15} - x^{14} + x^{12} + 13 x^{11} + 7 x^{10} + 11 x^{9} + 4 x^{8} + x^{7} + 7 x^{6} + 23 x^{5} + 31 x^{4} + 42 x^{3} + 24 x^{2} + 6 x - 1 \)
Invariants
| Degree: | $17$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(463009808974713123841=383^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $383$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{65} a^{14} + \frac{11}{65} a^{13} - \frac{3}{13} a^{12} - \frac{31}{65} a^{11} + \frac{9}{65} a^{10} + \frac{1}{13} a^{9} + \frac{28}{65} a^{8} + \frac{12}{65} a^{7} - \frac{28}{65} a^{6} + \frac{24}{65} a^{5} - \frac{31}{65} a^{4} + \frac{3}{65} a^{3} - \frac{6}{65} a^{2} + \frac{2}{13} a + \frac{1}{65}$, $\frac{1}{715} a^{15} - \frac{2}{715} a^{14} - \frac{93}{715} a^{13} - \frac{226}{715} a^{12} - \frac{173}{715} a^{11} - \frac{307}{715} a^{10} + \frac{93}{715} a^{9} - \frac{92}{715} a^{8} + \frac{271}{715} a^{7} - \frac{67}{715} a^{6} - \frac{18}{715} a^{5} - \frac{244}{715} a^{4} - \frac{35}{143} a^{3} + \frac{218}{715} a^{2} - \frac{259}{715} a - \frac{1}{55}$, $\frac{1}{3754465} a^{16} + \frac{382}{750893} a^{15} - \frac{4687}{3754465} a^{14} + \frac{1760433}{3754465} a^{13} - \frac{328105}{750893} a^{12} + \frac{1358022}{3754465} a^{11} + \frac{1837179}{3754465} a^{10} + \frac{466309}{3754465} a^{9} + \frac{1345062}{3754465} a^{8} - \frac{301062}{750893} a^{7} - \frac{4218}{42185} a^{6} - \frac{205108}{750893} a^{5} + \frac{1173782}{3754465} a^{4} - \frac{654867}{3754465} a^{3} - \frac{940898}{3754465} a^{2} + \frac{1634929}{3754465} a + \frac{1364334}{3754465}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2610.31631075 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 34 |
| The 10 conjugacy class representatives for $D_{17}$ |
| Character table for $D_{17}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $17$ | $17$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | $17$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | $17$ | $17$ | $17$ | $17$ | $17$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | $17$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 383 | Data not computed | ||||||