/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^17 - 4*x^9 - 18*x^6 - 12*x^3 + 4*x - 2, 17, 10, [1, 8], 44542611246065932779454464, [2, 3, 271, 835997920414096373], [1, a, a^2, a^3, a^4, a^5, a^6, a^7, a^8, a^9, a^10, a^11, a^12, a^13, a^14, a^15, 1/472383*a^16 + 208976/472383*a^15 + 104992/472383*a^14 + 34991/472383*a^13 - 209624/472383*a^12 + 52481/472383*a^11 - 46655/472383*a^10 + 209840/472383*a^9 + 69982/157461*a^8 + 53135/157461*a^7 - 52499/157461*a^6 + 64145/157461*a^5 - 46871/157461*a^4 - 52591/157461*a^3 + 16199/52487*a^2 + 672/52487*a - 210056/472383], 0, 1, [], 1, [ (59048)/(472383)*a^(16) + (26122)/(472383)*a^(15) + (13124)/(472383)*a^(14) - (54674)/(472383)*a^(13) - (26203)/(472383)*a^(12) + (65608)/(472383)*a^(11) + (53216)/(472383)*a^(10) + (26230)/(472383)*a^(9) - (109348)/(157461)*a^(8) - (52406)/(157461)*a^(7) - (26245)/(157461)*a^(6) - (247856)/(157461)*a^(5) - (104272)/(157461)*a^(4) - (104987)/(157461)*a^(3) - (4536)/(52487)*a^(2) + (84)/(52487)*a - (26257)/(472383) , (25474)/(157461)*a^(16) + (13136)/(157461)*a^(15) - (66338)/(157461)*a^(14) - (25987)/(157461)*a^(13) + (13117)/(157461)*a^(12) + (57104)/(157461)*a^(11) + (26158)/(157461)*a^(10) - (21868)/(157461)*a^(9) - (51974)/(52487)*a^(8) - (26253)/(52487)*a^(7) + (114208)/(52487)*a^(6) - (100528)/(52487)*a^(5) - (122552)/(52487)*a^(4) + (289976)/(52487)*a^(3) + (54083)/(52487)*a^(2) - (81676)/(52487)*a + (30619)/(157461) , (59048)/(472383)*a^(16) + (26122)/(472383)*a^(15) + (13124)/(472383)*a^(14) - (54674)/(472383)*a^(13) - (26203)/(472383)*a^(12) + (65608)/(472383)*a^(11) + (53216)/(472383)*a^(10) + (26230)/(472383)*a^(9) - (109348)/(157461)*a^(8) - (52406)/(157461)*a^(7) - (26245)/(157461)*a^(6) - (247856)/(157461)*a^(5) - (104272)/(157461)*a^(4) - (104987)/(157461)*a^(3) + (47951)/(52487)*a^(2) + (52571)/(52487)*a - (26257)/(472383) , (8748)/(52487)*a^(16) - (162)/(52487)*a^(15) + (3)/(52487)*a^(14) - (2916)/(52487)*a^(13) + (54)/(52487)*a^(12) - (1)/(52487)*a^(11) + (972)/(52487)*a^(10) - (18)/(52487)*a^(9) - (17496)/(52487)*a^(8) + (324)/(52487)*a^(7) - (6)/(52487)*a^(6) - (151632)/(52487)*a^(5) + (55295)/(52487)*a^(4) - (52)/(52487)*a^(3) - (54432)/(52487)*a^(2) + (53495)/(52487)*a + (52469)/(52487) , (2)/(3)*a^(16) + (1)/(3)*a^(15) - (1)/(3)*a^(14) - (2)/(3)*a^(13) - (1)/(3)*a^(12) + (1)/(3)*a^(11) + (2)/(3)*a^(10) + (1)/(3)*a^(9) - 3*a^(8) - 2*a^(7) + a^(6) - 9*a^(5) - 4*a^(4) + 5*a^(3) + a^(2) + (5)/(3) , (26248)/(472383)*a^(16) - (109348)/(472383)*a^(15) - (52406)/(472383)*a^(14) + (131216)/(472383)*a^(13) + (106432)/(472383)*a^(12) + (52460)/(472383)*a^(11) - (183704)/(472383)*a^(10) - (105460)/(472383)*a^(9) - (52490)/(157461)*a^(8) + (212864)/(157461)*a^(7) + (104920)/(157461)*a^(6) - (367435)/(157461)*a^(5) + (445168)/(157461)*a^(4) + (209480)/(157461)*a^(3) - (163296)/(52487)*a^(2) + (3024)/(52487)*a + (576871)/(472383) , (95540)/(157461)*a^(16) - (15377)/(157461)*a^(15) + (40136)/(157461)*a^(14) - (14351)/(157461)*a^(13) - (12370)/(157461)*a^(12) + (4117)/(157461)*a^(11) - (12712)/(157461)*a^(10) + (21619)/(157461)*a^(9) - (133676)/(52487)*a^(8) + (27747)/(52487)*a^(7) - (44253)/(52487)*a^(6) - (546177)/(52487)*a^(5) + (135500)/(52487)*a^(4) - (226065)/(52487)*a^(3) - (305075)/(52487)*a^(2) + (86324)/(52487)*a - (188329)/(157461) , (1589914)/(472383)*a^(16) + (923099)/(472383)*a^(15) + (380446)/(472383)*a^(14) + (134864)/(472383)*a^(13) + (24718)/(472383)*a^(12) - (39337)/(472383)*a^(11) - (79946)/(472383)*a^(10) - (25735)/(472383)*a^(9) - (2092187)/(157461)*a^(8) - (1210252)/(157461)*a^(7) - (551057)/(157461)*a^(6) - (9699376)/(157461)*a^(5) - (5590064)/(157461)*a^(4) - (2273947)/(157461)*a^(3) - (2348520)/(52487)*a^(2) - (1262852)/(52487)*a + (2388667)/(472383) ], 1877308.99113, []]