Normalized defining polynomial
\( x^{17} - 4x^{9} - 18x^{6} - 12x^{3} + 4x - 2 \)
Invariants
Degree: | $17$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[1, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(44542611246065932779454464\) \(\medspace = 2^{16}\cdot 3\cdot 271\cdot 835997920414096373\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(32.27\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{16/17}3^{1/2}271^{1/2}835997920414096373^{1/2}\approx 50057622659.30103$ | ||
Ramified primes: | \(2\), \(3\), \(271\), \(835997920414096373\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | $\Q(\sqrt{67966\!\cdots\!51249}$) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{472383}a^{16}+\frac{208976}{472383}a^{15}+\frac{104992}{472383}a^{14}+\frac{34991}{472383}a^{13}-\frac{209624}{472383}a^{12}+\frac{52481}{472383}a^{11}-\frac{46655}{472383}a^{10}+\frac{209840}{472383}a^{9}+\frac{69982}{157461}a^{8}+\frac{53135}{157461}a^{7}-\frac{52499}{157461}a^{6}+\frac{64145}{157461}a^{5}-\frac{46871}{157461}a^{4}-\frac{52591}{157461}a^{3}+\frac{16199}{52487}a^{2}+\frac{672}{52487}a-\frac{210056}{472383}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $8$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{59048}{472383}a^{16}+\frac{26122}{472383}a^{15}+\frac{13124}{472383}a^{14}-\frac{54674}{472383}a^{13}-\frac{26203}{472383}a^{12}+\frac{65608}{472383}a^{11}+\frac{53216}{472383}a^{10}+\frac{26230}{472383}a^{9}-\frac{109348}{157461}a^{8}-\frac{52406}{157461}a^{7}-\frac{26245}{157461}a^{6}-\frac{247856}{157461}a^{5}-\frac{104272}{157461}a^{4}-\frac{104987}{157461}a^{3}-\frac{4536}{52487}a^{2}+\frac{84}{52487}a-\frac{26257}{472383}$, $\frac{25474}{157461}a^{16}+\frac{13136}{157461}a^{15}-\frac{66338}{157461}a^{14}-\frac{25987}{157461}a^{13}+\frac{13117}{157461}a^{12}+\frac{57104}{157461}a^{11}+\frac{26158}{157461}a^{10}-\frac{21868}{157461}a^{9}-\frac{51974}{52487}a^{8}-\frac{26253}{52487}a^{7}+\frac{114208}{52487}a^{6}-\frac{100528}{52487}a^{5}-\frac{122552}{52487}a^{4}+\frac{289976}{52487}a^{3}+\frac{54083}{52487}a^{2}-\frac{81676}{52487}a+\frac{30619}{157461}$, $\frac{59048}{472383}a^{16}+\frac{26122}{472383}a^{15}+\frac{13124}{472383}a^{14}-\frac{54674}{472383}a^{13}-\frac{26203}{472383}a^{12}+\frac{65608}{472383}a^{11}+\frac{53216}{472383}a^{10}+\frac{26230}{472383}a^{9}-\frac{109348}{157461}a^{8}-\frac{52406}{157461}a^{7}-\frac{26245}{157461}a^{6}-\frac{247856}{157461}a^{5}-\frac{104272}{157461}a^{4}-\frac{104987}{157461}a^{3}+\frac{47951}{52487}a^{2}+\frac{52571}{52487}a-\frac{26257}{472383}$, $\frac{8748}{52487}a^{16}-\frac{162}{52487}a^{15}+\frac{3}{52487}a^{14}-\frac{2916}{52487}a^{13}+\frac{54}{52487}a^{12}-\frac{1}{52487}a^{11}+\frac{972}{52487}a^{10}-\frac{18}{52487}a^{9}-\frac{17496}{52487}a^{8}+\frac{324}{52487}a^{7}-\frac{6}{52487}a^{6}-\frac{151632}{52487}a^{5}+\frac{55295}{52487}a^{4}-\frac{52}{52487}a^{3}-\frac{54432}{52487}a^{2}+\frac{53495}{52487}a+\frac{52469}{52487}$, $\frac{2}{3}a^{16}+\frac{1}{3}a^{15}-\frac{1}{3}a^{14}-\frac{2}{3}a^{13}-\frac{1}{3}a^{12}+\frac{1}{3}a^{11}+\frac{2}{3}a^{10}+\frac{1}{3}a^{9}-3a^{8}-2a^{7}+a^{6}-9a^{5}-4a^{4}+5a^{3}+a^{2}+\frac{5}{3}$, $\frac{26248}{472383}a^{16}-\frac{109348}{472383}a^{15}-\frac{52406}{472383}a^{14}+\frac{131216}{472383}a^{13}+\frac{106432}{472383}a^{12}+\frac{52460}{472383}a^{11}-\frac{183704}{472383}a^{10}-\frac{105460}{472383}a^{9}-\frac{52490}{157461}a^{8}+\frac{212864}{157461}a^{7}+\frac{104920}{157461}a^{6}-\frac{367435}{157461}a^{5}+\frac{445168}{157461}a^{4}+\frac{209480}{157461}a^{3}-\frac{163296}{52487}a^{2}+\frac{3024}{52487}a+\frac{576871}{472383}$, $\frac{95540}{157461}a^{16}-\frac{15377}{157461}a^{15}+\frac{40136}{157461}a^{14}-\frac{14351}{157461}a^{13}-\frac{12370}{157461}a^{12}+\frac{4117}{157461}a^{11}-\frac{12712}{157461}a^{10}+\frac{21619}{157461}a^{9}-\frac{133676}{52487}a^{8}+\frac{27747}{52487}a^{7}-\frac{44253}{52487}a^{6}-\frac{546177}{52487}a^{5}+\frac{135500}{52487}a^{4}-\frac{226065}{52487}a^{3}-\frac{305075}{52487}a^{2}+\frac{86324}{52487}a-\frac{188329}{157461}$, $\frac{1589914}{472383}a^{16}+\frac{923099}{472383}a^{15}+\frac{380446}{472383}a^{14}+\frac{134864}{472383}a^{13}+\frac{24718}{472383}a^{12}-\frac{39337}{472383}a^{11}-\frac{79946}{472383}a^{10}-\frac{25735}{472383}a^{9}-\frac{2092187}{157461}a^{8}-\frac{1210252}{157461}a^{7}-\frac{551057}{157461}a^{6}-\frac{9699376}{157461}a^{5}-\frac{5590064}{157461}a^{4}-\frac{2273947}{157461}a^{3}-\frac{2348520}{52487}a^{2}-\frac{1262852}{52487}a+\frac{2388667}{472383}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 1877308.99113 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{8}\cdot 1877308.99113 \cdot 1}{2\cdot\sqrt{44542611246065932779454464}}\cr\approx \mathstrut & 0.683261374612 \end{aligned}\] (assuming GRH)
Galois group
A non-solvable group of order 355687428096000 |
The 297 conjugacy class representatives for $S_{17}$ |
Character table for $S_{17}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.10.0.1}{10} }{,}\,{\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ | ${\href{/padicField/7.11.0.1}{11} }{,}\,{\href{/padicField/7.6.0.1}{6} }$ | $17$ | ${\href{/padicField/13.9.0.1}{9} }{,}\,{\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.2.0.1}{2} }$ | ${\href{/padicField/17.8.0.1}{8} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.5.0.1}{5} }{,}\,{\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.13.0.1}{13} }{,}\,{\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.3.0.1}{3} }$ | ${\href{/padicField/31.11.0.1}{11} }{,}\,{\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.13.0.1}{13} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.7.0.1}{7} }{,}\,{\href{/padicField/41.2.0.1}{2} }$ | ${\href{/padicField/43.9.0.1}{9} }{,}\,{\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.8.0.1}{8} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.11.0.1}{11} }{,}\,{\href{/padicField/53.5.0.1}{5} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.17.16.1 | $x^{17} + 2$ | $17$ | $1$ | $16$ | $C_{17}:C_{8}$ | $[\ ]_{17}^{8}$ |
\(3\) | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
3.3.0.1 | $x^{3} + 2 x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
3.5.0.1 | $x^{5} + 2 x + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
3.7.0.1 | $x^{7} + 2 x^{2} + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
\(271\) | Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | ||
Deg $11$ | $1$ | $11$ | $0$ | $C_{11}$ | $[\ ]^{11}$ | ||
\(835997920414096373\) | $\Q_{835997920414096373}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $14$ | $1$ | $14$ | $0$ | $C_{14}$ | $[\ ]^{14}$ |