Normalized defining polynomial
\( x^{17} + 221 x^{15} - 850 x^{14} + 19601 x^{13} - 97036 x^{12} + 2452233 x^{11} - 5536254 x^{10} + 159332007 x^{9} - 1851117488 x^{8} + 12939379031 x^{7} - 45700927246 x^{6} + 12487240571 x^{5} + 217180838276 x^{4} - 328446625597 x^{3} + 138506493022 x^{2} + 2281813189964 x + 1767616042808 \)
Invariants
| Degree: | $17$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(39726964294200827244451673677113820402444926976=2^{24}\cdot 17^{32}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $550.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{6} - \frac{1}{8} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{8} a^{7} - \frac{1}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{8} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{176} a^{9} + \frac{3}{88} a^{8} - \frac{5}{176} a^{7} + \frac{5}{88} a^{6} - \frac{21}{176} a^{5} - \frac{15}{88} a^{4} + \frac{21}{176} a^{3} + \frac{7}{88} a^{2} - \frac{21}{44} a - \frac{1}{2}$, $\frac{1}{3520} a^{10} - \frac{9}{3520} a^{9} + \frac{191}{3520} a^{8} + \frac{107}{3520} a^{7} - \frac{83}{3520} a^{6} - \frac{243}{3520} a^{5} + \frac{125}{704} a^{4} + \frac{381}{3520} a^{3} + \frac{469}{1760} a^{2} - \frac{147}{880} a + \frac{17}{40}$, $\frac{1}{49280} a^{11} + \frac{3}{4928} a^{9} - \frac{1087}{24640} a^{8} - \frac{23}{1232} a^{7} - \frac{135}{4928} a^{6} - \frac{821}{24640} a^{5} - \frac{1957}{24640} a^{4} - \frac{559}{7040} a^{3} + \frac{8427}{24640} a^{2} + \frac{2491}{12320} a - \frac{21}{80}$, $\frac{1}{98560} a^{12} - \frac{1}{98560} a^{11} + \frac{1}{49280} a^{10} - \frac{17}{6160} a^{9} - \frac{87}{49280} a^{8} + \frac{247}{49280} a^{7} + \frac{1}{280} a^{6} - \frac{1527}{24640} a^{5} - \frac{12459}{98560} a^{4} + \frac{8419}{98560} a^{3} + \frac{16743}{49280} a^{2} - \frac{12249}{24640} a + \frac{73}{160}$, $\frac{1}{788480} a^{13} - \frac{1}{197120} a^{12} + \frac{3}{788480} a^{11} + \frac{3}{78848} a^{10} + \frac{173}{78848} a^{9} + \frac{431}{24640} a^{8} + \frac{7033}{394240} a^{7} - \frac{3867}{197120} a^{6} + \frac{1403}{22528} a^{5} + \frac{1241}{17920} a^{4} + \frac{18603}{788480} a^{3} - \frac{1677}{5120} a^{2} + \frac{63251}{197120} a + \frac{171}{1280}$, $\frac{1}{1576960} a^{14} - \frac{1}{1576960} a^{13} + \frac{1}{225280} a^{12} - \frac{9}{1576960} a^{11} + \frac{3}{78848} a^{10} + \frac{1459}{788480} a^{9} + \frac{587}{71680} a^{8} + \frac{673}{157696} a^{7} - \frac{68531}{1576960} a^{6} - \frac{26049}{1576960} a^{5} + \frac{188959}{1576960} a^{4} + \frac{387199}{1576960} a^{3} - \frac{15507}{112640} a^{2} - \frac{2159}{7168} a - \frac{719}{2560}$, $\frac{1}{84651212800} a^{15} + \frac{739}{42325606400} a^{14} + \frac{9931}{42325606400} a^{13} - \frac{1399}{755814400} a^{12} + \frac{330111}{84651212800} a^{11} - \frac{5315857}{42325606400} a^{10} - \frac{14416459}{10581401600} a^{9} - \frac{359676731}{10581401600} a^{8} + \frac{2258983519}{84651212800} a^{7} - \frac{2613678071}{42325606400} a^{6} - \frac{3025855801}{42325606400} a^{5} + \frac{28990561}{1322675200} a^{4} - \frac{15907360351}{84651212800} a^{3} + \frac{1893341939}{6046515200} a^{2} - \frac{76243929}{1923891200} a - \frac{6091269}{12492800}$, $\frac{1}{406720083429665525790058814453855867223262322704243025007411200} a^{16} + \frac{33392038030133845260381851367314436016149682824021}{12710002607177047680939337951682995850726947584507594531481600} a^{15} - \frac{36477336622326886653686352144480236330035941055163963743}{203360041714832762895029407226927933611631161352121512503705600} a^{14} + \frac{563559451914380689042594845801452082357685727460302667}{20336004171483276289502940722692793361163116135212151250370560} a^{13} + \frac{1874008874455671232485426537202853541988738742681594809679}{406720083429665525790058814453855867223262322704243025007411200} a^{12} - \frac{2392763444944714536843493318794374654648759091810532019}{264103950279003588175362866528477835859261248509248717537280} a^{11} + \frac{460683893711819991357956149102004436234779559368292257499}{14525717265345197349644957659066280972259368668008679464550400} a^{10} - \frac{87455615747976290136414412035390513088115461894074911062077}{50840010428708190723757351806731983402907790338030378125926400} a^{9} + \frac{1881355085711661130759792767474023041796254782332031582320527}{406720083429665525790058814453855867223262322704243025007411200} a^{8} - \frac{271899289213455401768588896013454145629125550748703315336411}{7262858632672598674822478829533140486129684334004339732275200} a^{7} + \frac{2374699513619054028761788798294254329220313583824310747915973}{40672008342966552579005881445385586722326232270424302500741120} a^{6} + \frac{181983149161660161590255078183546458364378728110623532952549}{9243638259765125586137700328496724255074143697823705113804800} a^{5} - \frac{15094891353734983040241175378907763599086089133297230475663203}{81344016685933105158011762890771173444652464540848605001482240} a^{4} + \frac{2012105863943536380398438532411937541746472094365417176395183}{9243638259765125586137700328496724255074143697823705113804800} a^{3} - \frac{312579925657868149228521886772686128500787815549820237758189}{50840010428708190723757351806731983402907790338030378125926400} a^{2} - \frac{295909451344445434198308183212305693189526564165024112719183}{2310909564941281396534425082124181063768535924455926278451200} a + \frac{12413047204522028326007985124443204936994613557768876964887}{30011812531704953201745780287327026802188778239687354265600}$
Class group and class number
$C_{17}$, which has order $17$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5054960379310000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 34 |
| The 10 conjugacy class representatives for $D_{17}$ |
| Character table for $D_{17}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $17$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.1.0.1}{1} }^{17}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | R | $17$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $17$ | $17$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | $17$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 17 | Data not computed | ||||||