Normalized defining polynomial
\( x^{17} - x^{16} + 5 x^{15} + 9 x^{14} - 13 x^{13} + 17 x^{12} + 56 x^{11} - 62 x^{10} + 55 x^{9} - 535 x^{8} + 181 x^{7} - 1027 x^{6} + 661 x^{5} - 1041 x^{4} + 166 x^{3} - 416 x^{2} + \cdots - 16 \)
Invariants
Degree: | $17$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[1, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(37103038784156796454937761\)
\(\medspace = 1571^{8}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(31.92\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Ramified primes: |
\(1571\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{7}-\frac{1}{2}a$, $\frac{1}{4}a^{8}-\frac{1}{4}a^{2}$, $\frac{1}{4}a^{9}-\frac{1}{4}a^{3}$, $\frac{1}{8}a^{10}-\frac{1}{8}a^{9}-\frac{1}{4}a^{7}-\frac{1}{4}a^{5}+\frac{1}{8}a^{4}+\frac{1}{8}a^{3}+\frac{1}{4}a^{2}$, $\frac{1}{32}a^{11}-\frac{1}{16}a^{10}+\frac{3}{32}a^{9}-\frac{1}{16}a^{7}+\frac{1}{16}a^{6}-\frac{5}{32}a^{5}+\frac{1}{8}a^{4}-\frac{13}{32}a^{3}+\frac{1}{8}a^{2}+\frac{1}{4}$, $\frac{1}{32}a^{12}-\frac{1}{32}a^{10}-\frac{1}{16}a^{9}-\frac{1}{16}a^{8}-\frac{1}{16}a^{7}-\frac{1}{32}a^{6}-\frac{3}{16}a^{5}-\frac{5}{32}a^{4}-\frac{7}{16}a^{3}+\frac{1}{4}a^{2}+\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{64}a^{13}-\frac{1}{64}a^{12}-\frac{1}{64}a^{11}-\frac{1}{64}a^{10}+\frac{1}{64}a^{7}-\frac{5}{64}a^{6}+\frac{1}{64}a^{5}-\frac{9}{64}a^{4}-\frac{5}{32}a^{3}-\frac{3}{8}a-\frac{1}{4}$, $\frac{1}{128}a^{14}-\frac{1}{64}a^{12}-\frac{1}{64}a^{11}-\frac{1}{128}a^{10}+\frac{1}{128}a^{8}-\frac{1}{32}a^{7}+\frac{7}{32}a^{6}+\frac{3}{16}a^{5}-\frac{19}{128}a^{4}+\frac{11}{64}a^{3}-\frac{7}{16}a^{2}+\frac{3}{16}a-\frac{1}{8}$, $\frac{1}{88064}a^{15}+\frac{135}{88064}a^{14}-\frac{59}{44032}a^{13}+\frac{333}{22016}a^{12}+\frac{917}{88064}a^{11}+\frac{3677}{88064}a^{10}+\frac{2673}{88064}a^{9}+\frac{9859}{88064}a^{8}+\frac{563}{22016}a^{7}-\frac{513}{5504}a^{6}+\frac{20753}{88064}a^{5}-\frac{11467}{88064}a^{4}+\frac{5677}{44032}a^{3}-\frac{2673}{5504}a^{2}-\frac{1817}{11008}a+\frac{1413}{5504}$, $\frac{1}{90806841344}a^{16}+\frac{161025}{45403420672}a^{15}+\frac{63666343}{90806841344}a^{14}-\frac{230362431}{45403420672}a^{13}-\frac{870664175}{90806841344}a^{12}-\frac{102756003}{22701710336}a^{11}+\frac{79105103}{2837713792}a^{10}+\frac{755216999}{45403420672}a^{9}-\frac{8022653443}{90806841344}a^{8}-\frac{4841956483}{22701710336}a^{7}+\frac{4677974369}{90806841344}a^{6}-\frac{16201311}{65993344}a^{5}+\frac{15286423313}{90806841344}a^{4}-\frac{15050594729}{45403420672}a^{3}+\frac{5596936081}{11350855168}a^{2}-\frac{617877433}{11350855168}a-\frac{1140399705}{5675427584}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $8$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{1263890223}{90806841344}a^{16}-\frac{368431735}{22701710336}a^{15}+\frac{5552907155}{90806841344}a^{14}+\frac{5060038285}{45403420672}a^{13}-\frac{22502983849}{90806841344}a^{12}+\frac{5293638533}{45403420672}a^{11}+\frac{33529381575}{45403420672}a^{10}-\frac{11609718905}{11350855168}a^{9}+\frac{23474970181}{90806841344}a^{8}-\frac{174912431355}{22701710336}a^{7}+\frac{342683486831}{90806841344}a^{6}-\frac{402379634909}{45403420672}a^{5}+\frac{1483090968221}{90806841344}a^{4}-\frac{186583266361}{45403420672}a^{3}+\frac{1861725561}{263973376}a^{2}-\frac{25030950349}{11350855168}a-\frac{2711154041}{5675427584}$, $\frac{2909689321}{90806841344}a^{16}-\frac{792071107}{22701710336}a^{15}+\frac{14549391117}{90806841344}a^{14}+\frac{12527119059}{45403420672}a^{13}-\frac{41219145951}{90806841344}a^{12}+\frac{24973908367}{45403420672}a^{11}+\frac{80739467149}{45403420672}a^{10}-\frac{1532108369}{709428448}a^{9}+\frac{158369635275}{90806841344}a^{8}-\frac{389953041941}{22701710336}a^{7}+\frac{670168407977}{90806841344}a^{6}-\frac{1454765525423}{45403420672}a^{5}+\frac{2186920230435}{90806841344}a^{4}-\frac{1495763962487}{45403420672}a^{3}+\frac{84364052757}{11350855168}a^{2}-\frac{142541336403}{11350855168}a-\frac{12400498039}{5675427584}$, $\frac{1255924841}{90806841344}a^{16}-\frac{716381609}{45403420672}a^{15}+\frac{6502932739}{90806841344}a^{14}+\frac{5261771157}{45403420672}a^{13}-\frac{17902278551}{90806841344}a^{12}+\frac{764672159}{2837713792}a^{11}+\frac{16979866051}{22701710336}a^{10}-\frac{45438685555}{45403420672}a^{9}+\frac{82282129881}{90806841344}a^{8}-\frac{167201595671}{22701710336}a^{7}+\frac{320893482697}{90806841344}a^{6}-\frac{7801890035}{527946752}a^{5}+\frac{962898037189}{90806841344}a^{4}-\frac{723529286693}{45403420672}a^{3}+\frac{37096068609}{11350855168}a^{2}-\frac{68839759517}{11350855168}a-\frac{5373308469}{5675427584}$, $\frac{1515981015}{90806841344}a^{16}-\frac{41904517}{2837713792}a^{15}+\frac{6992995999}{90806841344}a^{14}+\frac{7369788881}{45403420672}a^{13}-\frac{19819821841}{90806841344}a^{12}+\frac{9279601603}{45403420672}a^{11}+\frac{46260402789}{45403420672}a^{10}-\frac{21547776667}{22701710336}a^{9}+\frac{43971974417}{90806841344}a^{8}-\frac{194183868975}{22701710336}a^{7}+\frac{195403880663}{90806841344}a^{6}-\frac{15579460117}{1055893504}a^{5}+\frac{827331380769}{90806841344}a^{4}-\frac{599290488869}{45403420672}a^{3}-\frac{2044670813}{11350855168}a^{2}-\frac{56259623617}{11350855168}a-\frac{4454962629}{5675427584}$, $\frac{66658853}{22701710336}a^{16}-\frac{3667459}{354714224}a^{15}+\frac{496928861}{22701710336}a^{14}-\frac{46210189}{11350855168}a^{13}-\frac{2514831251}{22701710336}a^{12}+\frac{1938177881}{11350855168}a^{11}+\frac{1214071583}{11350855168}a^{10}-\frac{3909252377}{5675427584}a^{9}+\frac{14798416115}{22701710336}a^{8}-\frac{8731724141}{5675427584}a^{7}+\frac{93484012581}{22701710336}a^{6}-\frac{48860143173}{11350855168}a^{5}+\frac{146145271395}{22701710336}a^{4}-\frac{82828743439}{11350855168}a^{3}+\frac{10295820425}{2837713792}a^{2}+\frac{1972142653}{2837713792}a+\frac{248243153}{1418856896}$, $\frac{538113551}{90806841344}a^{16}-\frac{556237079}{45403420672}a^{15}+\frac{3677497429}{90806841344}a^{14}+\frac{844230963}{45403420672}a^{13}-\frac{10656879217}{90806841344}a^{12}+\frac{1330280321}{5675427584}a^{11}+\frac{3627300233}{22701710336}a^{10}-\frac{32535395325}{45403420672}a^{9}+\frac{96013317519}{90806841344}a^{8}-\frac{84767997313}{22701710336}a^{7}+\frac{389351733807}{90806841344}a^{6}-\frac{212331615179}{22701710336}a^{5}+\frac{957190484899}{90806841344}a^{4}-\frac{567814734947}{45403420672}a^{3}+\frac{105225605751}{11350855168}a^{2}-\frac{50104960459}{11350855168}a-\frac{2709711827}{5675427584}$, $\frac{167692833}{22701710336}a^{16}+\frac{9288515}{1418856896}a^{15}+\frac{524814425}{22701710336}a^{14}+\frac{1397050695}{11350855168}a^{13}+\frac{584873353}{22701710336}a^{12}-\frac{1264244019}{11350855168}a^{11}+\frac{5214826099}{11350855168}a^{10}+\frac{1698142279}{5675427584}a^{9}-\frac{11609254281}{22701710336}a^{8}-\frac{22756913753}{5675427584}a^{7}-\frac{143138205375}{22701710336}a^{6}-\frac{59494587241}{11350855168}a^{5}-\frac{56535605657}{22701710336}a^{4}+\frac{93100856189}{11350855168}a^{3}+\frac{6160161509}{2837713792}a^{2}+\frac{14487954425}{2837713792}a+\frac{199675357}{1418856896}$, $\frac{278980369}{90806841344}a^{16}-\frac{18152607}{11350855168}a^{15}+\frac{1005097729}{90806841344}a^{14}+\frac{1581799791}{45403420672}a^{13}-\frac{3944167975}{90806841344}a^{12}-\frac{554525367}{45403420672}a^{11}+\frac{7750850311}{45403420672}a^{10}-\frac{5366175123}{22701710336}a^{9}-\frac{24111045345}{90806841344}a^{8}-\frac{43105856305}{22701710336}a^{7}-\frac{98736247087}{90806841344}a^{6}-\frac{130015131213}{45403420672}a^{5}-\frac{81147186913}{90806841344}a^{4}-\frac{64297775851}{45403420672}a^{3}-\frac{34548106763}{11350855168}a^{2}-\frac{2215740703}{11350855168}a-\frac{9917600395}{5675427584}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 8867681.2165 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{8}\cdot 8867681.2165 \cdot 1}{2\cdot\sqrt{37103038784156796454937761}}\cr\approx \mathstrut & 3.5362607363 \end{aligned}\] (assuming GRH)
Galois group
A solvable group of order 34 |
The 10 conjugacy class representatives for $D_{17}$ |
Character table for $D_{17}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Galois closure: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.2.0.1}{2} }^{8}{,}\,{\href{/padicField/2.1.0.1}{1} }$ | $17$ | $17$ | $17$ | ${\href{/padicField/11.2.0.1}{2} }^{8}{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.2.0.1}{2} }^{8}{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.2.0.1}{2} }^{8}{,}\,{\href{/padicField/17.1.0.1}{1} }$ | $17$ | $17$ | $17$ | $17$ | ${\href{/padicField/37.2.0.1}{2} }^{8}{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.2.0.1}{2} }^{8}{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.2.0.1}{2} }^{8}{,}\,{\href{/padicField/43.1.0.1}{1} }$ | $17$ | ${\href{/padicField/53.2.0.1}{2} }^{8}{,}\,{\href{/padicField/53.1.0.1}{1} }$ | $17$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(1571\)
| $\Q_{1571}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |