Normalized defining polynomial
\( x^{17} - x^{16} + 5 x^{15} + 9 x^{14} - 13 x^{13} + 17 x^{12} + 56 x^{11} - 62 x^{10} + 55 x^{9} - 535 x^{8} + 181 x^{7} - 1027 x^{6} + 661 x^{5} - 1041 x^{4} + 166 x^{3} - 416 x^{2} - 88 x - 16 \)
Invariants
| Degree: | $17$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(37103038784156796454937761=1571^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $1571$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} + \frac{1}{8} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{32} a^{11} - \frac{1}{16} a^{10} + \frac{3}{32} a^{9} - \frac{1}{16} a^{7} + \frac{1}{16} a^{6} - \frac{5}{32} a^{5} + \frac{1}{8} a^{4} - \frac{13}{32} a^{3} + \frac{1}{8} a^{2} + \frac{1}{4}$, $\frac{1}{32} a^{12} - \frac{1}{32} a^{10} - \frac{1}{16} a^{9} - \frac{1}{16} a^{8} - \frac{1}{16} a^{7} - \frac{1}{32} a^{6} - \frac{3}{16} a^{5} - \frac{5}{32} a^{4} - \frac{7}{16} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{64} a^{13} - \frac{1}{64} a^{12} - \frac{1}{64} a^{11} - \frac{1}{64} a^{10} + \frac{1}{64} a^{7} - \frac{5}{64} a^{6} + \frac{1}{64} a^{5} - \frac{9}{64} a^{4} - \frac{5}{32} a^{3} - \frac{3}{8} a - \frac{1}{4}$, $\frac{1}{128} a^{14} - \frac{1}{64} a^{12} - \frac{1}{64} a^{11} - \frac{1}{128} a^{10} + \frac{1}{128} a^{8} - \frac{1}{32} a^{7} + \frac{7}{32} a^{6} + \frac{3}{16} a^{5} - \frac{19}{128} a^{4} + \frac{11}{64} a^{3} - \frac{7}{16} a^{2} + \frac{3}{16} a - \frac{1}{8}$, $\frac{1}{88064} a^{15} + \frac{135}{88064} a^{14} - \frac{59}{44032} a^{13} + \frac{333}{22016} a^{12} + \frac{917}{88064} a^{11} + \frac{3677}{88064} a^{10} + \frac{2673}{88064} a^{9} + \frac{9859}{88064} a^{8} + \frac{563}{22016} a^{7} - \frac{513}{5504} a^{6} + \frac{20753}{88064} a^{5} - \frac{11467}{88064} a^{4} + \frac{5677}{44032} a^{3} - \frac{2673}{5504} a^{2} - \frac{1817}{11008} a + \frac{1413}{5504}$, $\frac{1}{90806841344} a^{16} + \frac{161025}{45403420672} a^{15} + \frac{63666343}{90806841344} a^{14} - \frac{230362431}{45403420672} a^{13} - \frac{870664175}{90806841344} a^{12} - \frac{102756003}{22701710336} a^{11} + \frac{79105103}{2837713792} a^{10} + \frac{755216999}{45403420672} a^{9} - \frac{8022653443}{90806841344} a^{8} - \frac{4841956483}{22701710336} a^{7} + \frac{4677974369}{90806841344} a^{6} - \frac{16201311}{65993344} a^{5} + \frac{15286423313}{90806841344} a^{4} - \frac{15050594729}{45403420672} a^{3} + \frac{5596936081}{11350855168} a^{2} - \frac{617877433}{11350855168} a - \frac{1140399705}{5675427584}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8867681.2165 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 34 |
| The 10 conjugacy class representatives for $D_{17}$ |
| Character table for $D_{17}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }$ | $17$ | $17$ | $17$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $17$ | $17$ | $17$ | $17$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $17$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | $17$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 1571 | Data not computed | ||||||