Normalized defining polynomial
\( x^{17} - 2 x^{16} - 3 x^{14} + 24 x^{13} + 18 x^{12} - 138 x^{10} - 203 x^{9} - 75 x^{8} + 352 x^{7} + 588 x^{6} + 384 x^{5} + 132 x^{4} + 493 x^{3} + 1015 x^{2} + 874 x + 337 \)
Invariants
| Degree: | $17$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(34895459505131153638432321=1559^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $1559$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{443} a^{15} - \frac{22}{443} a^{14} + \frac{5}{443} a^{13} + \frac{164}{443} a^{12} - \frac{115}{443} a^{11} + \frac{86}{443} a^{10} + \frac{18}{443} a^{9} + \frac{190}{443} a^{8} + \frac{128}{443} a^{7} + \frac{214}{443} a^{6} + \frac{197}{443} a^{5} + \frac{132}{443} a^{4} + \frac{206}{443} a^{3} + \frac{169}{443} a^{2} + \frac{90}{443} a + \frac{124}{443}$, $\frac{1}{6248448141901847587} a^{16} - \frac{5917373005460816}{6248448141901847587} a^{15} + \frac{2591849632023124683}{6248448141901847587} a^{14} - \frac{1956235081860935964}{6248448141901847587} a^{13} - \frac{162440894757254489}{6248448141901847587} a^{12} - \frac{2713326455039835886}{6248448141901847587} a^{11} - \frac{475841400320734068}{6248448141901847587} a^{10} + \frac{329526275621675768}{6248448141901847587} a^{9} + \frac{1853850797561825028}{6248448141901847587} a^{8} + \frac{667163196984398742}{6248448141901847587} a^{7} - \frac{1631723818809708979}{6248448141901847587} a^{6} - \frac{13397811352199677}{60664545067008229} a^{5} + \frac{1483113705698191815}{6248448141901847587} a^{4} - \frac{39899010751413071}{6248448141901847587} a^{3} - \frac{2192669092600096439}{6248448141901847587} a^{2} + \frac{30175447154931428}{60664545067008229} a + \frac{327744773698944580}{6248448141901847587}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 432952.23952 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 34 |
| The 10 conjugacy class representatives for $D_{17}$ |
| Character table for $D_{17}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $17$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $17$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 1559 | Data not computed | ||||||