Normalized defining polynomial
\( x^{17} + 17 x^{15} + 85 x^{13} - 68 x^{12} + 595 x^{11} - 1496 x^{10} + 3638 x^{9} - 4420 x^{8} - 952 x^{7} - 816 x^{6} + 9248 x^{5} - 7616 x^{4} + 10880 x^{3} - 4352 x^{2} - 4096 \)
Invariants
| Degree: | $17$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(266353469466055312828111323136=2^{16}\cdot 17^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{8} + \frac{1}{8} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{9} - \frac{1}{16} a^{8} + \frac{1}{32} a^{5} - \frac{3}{16} a^{4} - \frac{3}{16} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{64} a^{10} - \frac{1}{16} a^{8} - \frac{7}{64} a^{6} - \frac{1}{16} a^{5} - \frac{5}{32} a^{4} - \frac{1}{16} a^{3} + \frac{3}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{64} a^{11} + \frac{1}{64} a^{7} + \frac{1}{16} a^{6} + \frac{1}{32} a^{5} + \frac{1}{16} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{256} a^{12} + \frac{1}{256} a^{10} - \frac{1}{64} a^{9} + \frac{13}{256} a^{8} + \frac{3}{64} a^{7} - \frac{13}{256} a^{6} - \frac{7}{64} a^{5} + \frac{31}{128} a^{4} - \frac{23}{64} a^{3} + \frac{11}{32} a^{2} - \frac{7}{16} a - \frac{1}{4}$, $\frac{1}{512} a^{13} + \frac{1}{512} a^{11} - \frac{3}{512} a^{9} - \frac{1}{128} a^{8} + \frac{19}{512} a^{7} - \frac{3}{64} a^{6} + \frac{31}{256} a^{5} + \frac{7}{128} a^{4} - \frac{11}{64} a^{3} - \frac{1}{32} a^{2} - \frac{1}{2}$, $\frac{1}{2048} a^{14} - \frac{3}{2048} a^{12} - \frac{1}{128} a^{11} - \frac{15}{2048} a^{10} - \frac{5}{512} a^{9} + \frac{63}{2048} a^{8} - \frac{11}{256} a^{7} + \frac{117}{1024} a^{6} - \frac{5}{512} a^{5} + \frac{1}{8} a^{4} - \frac{13}{32} a^{3} - \frac{9}{64} a^{2} + \frac{1}{32} a - \frac{1}{8}$, $\frac{1}{196608} a^{15} - \frac{1}{6144} a^{14} - \frac{131}{196608} a^{13} - \frac{5}{6144} a^{12} + \frac{529}{196608} a^{11} + \frac{295}{49152} a^{10} + \frac{597}{65536} a^{9} + \frac{403}{24576} a^{8} - \frac{1051}{98304} a^{7} + \frac{1607}{49152} a^{6} - \frac{29}{384} a^{5} + \frac{1517}{6144} a^{4} - \frac{2159}{6144} a^{3} - \frac{809}{3072} a^{2} - \frac{35}{96} a + \frac{43}{192}$, $\frac{1}{7401923607134208} a^{16} - \frac{6311857681}{3700961803567104} a^{15} + \frac{1496202275965}{7401923607134208} a^{14} + \frac{1581660772531}{3700961803567104} a^{13} - \frac{13203271962863}{7401923607134208} a^{12} - \frac{20433318272323}{3700961803567104} a^{11} + \frac{5683434227757}{2467307869044736} a^{10} - \frac{41383079973299}{3700961803567104} a^{9} - \frac{49921422246931}{3700961803567104} a^{8} + \frac{7898100639697}{925240450891776} a^{7} - \frac{78417294247895}{925240450891776} a^{6} + \frac{9845341056773}{231310112722944} a^{5} + \frac{50812334425207}{231310112722944} a^{4} - \frac{24856911424093}{57827528180736} a^{3} + \frac{18106481364361}{57827528180736} a^{2} - \frac{1327001594645}{7228441022592} a + \frac{147572582639}{1204740170432}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 42372140421.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_{17}.C_2$ (as 17T3):
| A solvable group of order 68 |
| The 8 conjugacy class representatives for $C_{17}:C_{4}$ |
| Character table for $C_{17}:C_{4}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | $17$ | R | $17$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | $17$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | $17$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 17 | Data not computed | ||||||