magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-40, 122, -844, 1608, -1192, 1580, -180, -1540, -1488, 612, -12, -520, -92, 116, 16, -14, -2, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^17 - 2*x^16 - 14*x^15 + 16*x^14 + 116*x^13 - 92*x^12 - 520*x^11 - 12*x^10 + 612*x^9 - 1488*x^8 - 1540*x^7 - 180*x^6 + 1580*x^5 - 1192*x^4 + 1608*x^3 - 844*x^2 + 122*x - 40)
gp: K = bnfinit(x^17 - 2*x^16 - 14*x^15 + 16*x^14 + 116*x^13 - 92*x^12 - 520*x^11 - 12*x^10 + 612*x^9 - 1488*x^8 - 1540*x^7 - 180*x^6 + 1580*x^5 - 1192*x^4 + 1608*x^3 - 844*x^2 + 122*x - 40, 1)
\( x^{17} - 2 x^{16} - 14 x^{15} + 16 x^{14} + 116 x^{13} - 92 x^{12} - 520 x^{11} - 12 x^{10} + 612 x^{9} - 1488 x^{8} - 1540 x^{7} - 180 x^{6} + 1580 x^{5} - 1192 x^{4} + 1608 x^{3} - 844 x^{2} + 122 x - 40 \)
magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
| Degree: | | $17$ |
|
| Signature: | | $[1, 8]$ |
|
| Discriminant: | | \(2640732930336770744777703424=2^{30}\cdot 199^{8}\) | magma: Discriminant(Integers(K));
|
| Root discriminant: | | $41.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
|
| Ramified primes: | | $2, 199$ | magma: PrimeDivisors(Discriminant(Integers(K)));
gp: factor(abs(K.disc))[,1]~
|
| This field is not Galois over $\Q$. |
| This is not a CM field. |
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{529640928484482379991048562878} a^{16} + \frac{113709381659494316635300408134}{264820464242241189995524281439} a^{15} - \frac{61943235101129197733417044674}{264820464242241189995524281439} a^{14} + \frac{12423157068358265845474486687}{264820464242241189995524281439} a^{13} + \frac{34244214218755210466985536001}{264820464242241189995524281439} a^{12} + \frac{34348135403482203219264793005}{264820464242241189995524281439} a^{11} - \frac{9688021455469352629644571467}{264820464242241189995524281439} a^{10} - \frac{36132884583782676782893806384}{264820464242241189995524281439} a^{9} + \frac{1304692737829081305122023802}{3952544242421510298440660917} a^{8} + \frac{110058323648138546863537087508}{264820464242241189995524281439} a^{7} + \frac{71755077950124959957321195748}{264820464242241189995524281439} a^{6} + \frac{15493423858179442401252435656}{264820464242241189995524281439} a^{5} + \frac{2149771624335915152310798123}{4488482444783748982974987821} a^{4} - \frac{68870993893524926894326427714}{264820464242241189995524281439} a^{3} - \frac{18952672497162653835076964687}{264820464242241189995524281439} a^{2} + \frac{65424079293829850455509679791}{264820464242241189995524281439} a - \frac{122752095623347146298207799848}{264820464242241189995524281439}$
$C_{15}$, which has order $15$
(assuming GRH)
sage: K.class_group().invariants()
magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
| Rank: | | $8$
|
|
| Torsion generator: | | \( -1 \) (order $2$)
| magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
|
| Fundamental units: | | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
(assuming GRH)
| magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
|
| Regulator: | | \( 5943625.48287 \)
(assuming GRH)
|
|
$\PSL(2,16)$ (as 17T6):
sage: K.galois_group(type='pari')
|
The extension is primitive: there are no intermediate fields
between this field and $\Q$.
|
| $p$ |
2 |
3 |
5 |
7 |
11 |
13 |
17 |
19 |
23 |
29 |
31 |
37 |
41 |
43 |
47 |
53 |
59 |
| Cycle type |
R |
${\href{/LocalNumberField/3.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ |
$15{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ |
$15{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ |
$15{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ |
$17$ |
$17$ |
$17$ |
${\href{/LocalNumberField/23.3.0.1}{3} }^{5}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ |
$17$ |
${\href{/LocalNumberField/31.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ |
$17$ |
${\href{/LocalNumberField/41.3.0.1}{3} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ |
$17$ |
${\href{/LocalNumberField/47.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ |
$17$ |
${\href{/LocalNumberField/59.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime.
Cycle lengths which are repeated in a cycle type are indicated by
exponents.
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
|
Label |
Dimension |
Conductor |
Defining polynomial of Artin field |
$G$ |
Ind |
$\chi(c)$ |
|
*
| 1.1.1t1.1c1 | $1$ |
$1$ |
$x$ |
$C_1$ |
$1$ |
$1$ |
|
| 15.2e30_199e8.240.1c1 | $15$ |
$ 2^{30} \cdot 199^{8}$ |
$x^{17} - 2 x^{16} - 14 x^{15} + 16 x^{14} + 116 x^{13} - 92 x^{12} - 520 x^{11} - 12 x^{10} + 612 x^{9} - 1488 x^{8} - 1540 x^{7} - 180 x^{6} + 1580 x^{5} - 1192 x^{4} + 1608 x^{3} - 844 x^{2} + 122 x - 40$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$-1$ |
|
| 15.2e30_199e8.240.1c2 | $15$ |
$ 2^{30} \cdot 199^{8}$ |
$x^{17} - 2 x^{16} - 14 x^{15} + 16 x^{14} + 116 x^{13} - 92 x^{12} - 520 x^{11} - 12 x^{10} + 612 x^{9} - 1488 x^{8} - 1540 x^{7} - 180 x^{6} + 1580 x^{5} - 1192 x^{4} + 1608 x^{3} - 844 x^{2} + 122 x - 40$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$-1$ |
|
| 15.2e30_199e8.240.1c3 | $15$ |
$ 2^{30} \cdot 199^{8}$ |
$x^{17} - 2 x^{16} - 14 x^{15} + 16 x^{14} + 116 x^{13} - 92 x^{12} - 520 x^{11} - 12 x^{10} + 612 x^{9} - 1488 x^{8} - 1540 x^{7} - 180 x^{6} + 1580 x^{5} - 1192 x^{4} + 1608 x^{3} - 844 x^{2} + 122 x - 40$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$-1$ |
|
| 15.2e30_199e8.240.1c4 | $15$ |
$ 2^{30} \cdot 199^{8}$ |
$x^{17} - 2 x^{16} - 14 x^{15} + 16 x^{14} + 116 x^{13} - 92 x^{12} - 520 x^{11} - 12 x^{10} + 612 x^{9} - 1488 x^{8} - 1540 x^{7} - 180 x^{6} + 1580 x^{5} - 1192 x^{4} + 1608 x^{3} - 844 x^{2} + 122 x - 40$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$-1$ |
|
| 15.2e30_199e8.240.1c5 | $15$ |
$ 2^{30} \cdot 199^{8}$ |
$x^{17} - 2 x^{16} - 14 x^{15} + 16 x^{14} + 116 x^{13} - 92 x^{12} - 520 x^{11} - 12 x^{10} + 612 x^{9} - 1488 x^{8} - 1540 x^{7} - 180 x^{6} + 1580 x^{5} - 1192 x^{4} + 1608 x^{3} - 844 x^{2} + 122 x - 40$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$-1$ |
|
| 15.2e30_199e8.240.1c6 | $15$ |
$ 2^{30} \cdot 199^{8}$ |
$x^{17} - 2 x^{16} - 14 x^{15} + 16 x^{14} + 116 x^{13} - 92 x^{12} - 520 x^{11} - 12 x^{10} + 612 x^{9} - 1488 x^{8} - 1540 x^{7} - 180 x^{6} + 1580 x^{5} - 1192 x^{4} + 1608 x^{3} - 844 x^{2} + 122 x - 40$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$-1$ |
|
| 15.2e30_199e8.240.1c7 | $15$ |
$ 2^{30} \cdot 199^{8}$ |
$x^{17} - 2 x^{16} - 14 x^{15} + 16 x^{14} + 116 x^{13} - 92 x^{12} - 520 x^{11} - 12 x^{10} + 612 x^{9} - 1488 x^{8} - 1540 x^{7} - 180 x^{6} + 1580 x^{5} - 1192 x^{4} + 1608 x^{3} - 844 x^{2} + 122 x - 40$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$-1$ |
|
| 15.2e30_199e8.240.1c8 | $15$ |
$ 2^{30} \cdot 199^{8}$ |
$x^{17} - 2 x^{16} - 14 x^{15} + 16 x^{14} + 116 x^{13} - 92 x^{12} - 520 x^{11} - 12 x^{10} + 612 x^{9} - 1488 x^{8} - 1540 x^{7} - 180 x^{6} + 1580 x^{5} - 1192 x^{4} + 1608 x^{3} - 844 x^{2} + 122 x - 40$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$-1$ |
|
*
| 16.2e30_199e8.17t6.1c1 | $16$ |
$ 2^{30} \cdot 199^{8}$ |
$x^{17} - 2 x^{16} - 14 x^{15} + 16 x^{14} + 116 x^{13} - 92 x^{12} - 520 x^{11} - 12 x^{10} + 612 x^{9} - 1488 x^{8} - 1540 x^{7} - 180 x^{6} + 1580 x^{5} - 1192 x^{4} + 1608 x^{3} - 844 x^{2} + 122 x - 40$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$0$ |
|
| 17.2e30_199e8.51.1c1 | $17$ |
$ 2^{30} \cdot 199^{8}$ |
$x^{17} - 2 x^{16} - 14 x^{15} + 16 x^{14} + 116 x^{13} - 92 x^{12} - 520 x^{11} - 12 x^{10} + 612 x^{9} - 1488 x^{8} - 1540 x^{7} - 180 x^{6} + 1580 x^{5} - 1192 x^{4} + 1608 x^{3} - 844 x^{2} + 122 x - 40$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$1$ |
|
| 17.2e30_199e8.68.1c1 | $17$ |
$ 2^{30} \cdot 199^{8}$ |
$x^{17} - 2 x^{16} - 14 x^{15} + 16 x^{14} + 116 x^{13} - 92 x^{12} - 520 x^{11} - 12 x^{10} + 612 x^{9} - 1488 x^{8} - 1540 x^{7} - 180 x^{6} + 1580 x^{5} - 1192 x^{4} + 1608 x^{3} - 844 x^{2} + 122 x - 40$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$1$ |
|
| 17.2e30_199e8.68.1c2 | $17$ |
$ 2^{30} \cdot 199^{8}$ |
$x^{17} - 2 x^{16} - 14 x^{15} + 16 x^{14} + 116 x^{13} - 92 x^{12} - 520 x^{11} - 12 x^{10} + 612 x^{9} - 1488 x^{8} - 1540 x^{7} - 180 x^{6} + 1580 x^{5} - 1192 x^{4} + 1608 x^{3} - 844 x^{2} + 122 x - 40$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$1$ |
|
| 17.2e30_199e8.120.1c1 | $17$ |
$ 2^{30} \cdot 199^{8}$ |
$x^{17} - 2 x^{16} - 14 x^{15} + 16 x^{14} + 116 x^{13} - 92 x^{12} - 520 x^{11} - 12 x^{10} + 612 x^{9} - 1488 x^{8} - 1540 x^{7} - 180 x^{6} + 1580 x^{5} - 1192 x^{4} + 1608 x^{3} - 844 x^{2} + 122 x - 40$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$1$ |
|
| 17.2e30_199e8.120.1c2 | $17$ |
$ 2^{30} \cdot 199^{8}$ |
$x^{17} - 2 x^{16} - 14 x^{15} + 16 x^{14} + 116 x^{13} - 92 x^{12} - 520 x^{11} - 12 x^{10} + 612 x^{9} - 1488 x^{8} - 1540 x^{7} - 180 x^{6} + 1580 x^{5} - 1192 x^{4} + 1608 x^{3} - 844 x^{2} + 122 x - 40$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$1$ |
|
| 17.2e30_199e8.120.1c3 | $17$ |
$ 2^{30} \cdot 199^{8}$ |
$x^{17} - 2 x^{16} - 14 x^{15} + 16 x^{14} + 116 x^{13} - 92 x^{12} - 520 x^{11} - 12 x^{10} + 612 x^{9} - 1488 x^{8} - 1540 x^{7} - 180 x^{6} + 1580 x^{5} - 1192 x^{4} + 1608 x^{3} - 844 x^{2} + 122 x - 40$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$1$ |
|
| 17.2e30_199e8.120.1c4 | $17$ |
$ 2^{30} \cdot 199^{8}$ |
$x^{17} - 2 x^{16} - 14 x^{15} + 16 x^{14} + 116 x^{13} - 92 x^{12} - 520 x^{11} - 12 x^{10} + 612 x^{9} - 1488 x^{8} - 1540 x^{7} - 180 x^{6} + 1580 x^{5} - 1192 x^{4} + 1608 x^{3} - 844 x^{2} + 122 x - 40$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$1$ |
Data is given for all irreducible
representations of the Galois group for the Galois closure
of this field. Those marked with * are summands in the
permutation representation coming from this field. Representations
which appear with multiplicity greater than one are indicated
by exponents on the *.