Properties

Label 17.1.231494845017984433.1
Degree $17$
Signature $[1, 8]$
Discriminant $2.315\times 10^{17}$
Root discriminant \(10.51\)
Ramified primes $59,1217,1579,34607051$
Class number $1$
Class group trivial
Galois group $S_{17}$ (as 17T10)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^17 - x^16 + 2*x^13 + x^12 - 5*x^11 + x^10 + 3*x^9 + 3*x^8 - x^7 - 7*x^6 + 2*x^5 + 6*x^4 + x^3 - 3*x^2 - 3*x - 1)
 
gp: K = bnfinit(y^17 - y^16 + 2*y^13 + y^12 - 5*y^11 + y^10 + 3*y^9 + 3*y^8 - y^7 - 7*y^6 + 2*y^5 + 6*y^4 + y^3 - 3*y^2 - 3*y - 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^17 - x^16 + 2*x^13 + x^12 - 5*x^11 + x^10 + 3*x^9 + 3*x^8 - x^7 - 7*x^6 + 2*x^5 + 6*x^4 + x^3 - 3*x^2 - 3*x - 1);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^17 - x^16 + 2*x^13 + x^12 - 5*x^11 + x^10 + 3*x^9 + 3*x^8 - x^7 - 7*x^6 + 2*x^5 + 6*x^4 + x^3 - 3*x^2 - 3*x - 1)
 

\( x^{17} - x^{16} + 2 x^{13} + x^{12} - 5 x^{11} + x^{10} + 3 x^{9} + 3 x^{8} - x^{7} - 7 x^{6} + 2 x^{5} + \cdots - 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $17$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 8]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(231494845017984433\) \(\medspace = 59^{2}\cdot 1217\cdot 1579\cdot 34607051\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(10.51\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $59^{1/2}1217^{1/2}1579^{1/2}34607051^{1/2}\approx 62638977.010985635$
Ramified primes:   \(59\), \(1217\), \(1579\), \(34607051\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  $\Q(\sqrt{66502397304793}$)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{82223}a^{16}+\frac{32015}{82223}a^{15}+\frac{322}{82223}a^{14}+\frac{31277}{82223}a^{13}-\frac{29483}{82223}a^{12}-\frac{7687}{82223}a^{11}-\frac{13558}{82223}a^{10}-\frac{17710}{82223}a^{9}+\frac{6451}{82223}a^{8}-\frac{8957}{82223}a^{7}+\frac{26511}{82223}a^{6}-\frac{11860}{82223}a^{5}-\frac{3944}{82223}a^{4}+\frac{23430}{82223}a^{3}+\frac{14452}{82223}a^{2}+\frac{26408}{82223}a-\frac{20584}{82223}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $8$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a$, $\frac{64784}{82223}a^{16}-\frac{97638}{82223}a^{15}+\frac{58029}{82223}a^{14}-\frac{54444}{82223}a^{13}+\frac{178064}{82223}a^{12}-\frac{52120}{82223}a^{11}-\frac{282055}{82223}a^{10}+\frac{179548}{82223}a^{9}+\frac{64298}{82223}a^{8}+\frac{224092}{82223}a^{7}-\frac{232069}{82223}a^{6}-\frac{293197}{82223}a^{5}+\frac{287657}{82223}a^{4}+\frac{216986}{82223}a^{3}-\frac{14933}{82223}a^{2}-\frac{244758}{82223}a-\frac{103465}{82223}$, $\frac{90089}{82223}a^{16}-\frac{183505}{82223}a^{15}+\frac{148385}{82223}a^{14}-\frac{68557}{82223}a^{13}+\frac{202251}{82223}a^{12}-\frac{114260}{82223}a^{11}-\frac{415112}{82223}a^{10}+\frac{554463}{82223}a^{9}-\frac{70248}{82223}a^{8}+\frac{91572}{82223}a^{7}-\frac{228671}{82223}a^{6}-\frac{378770}{82223}a^{5}+\frac{714574}{82223}a^{4}+\frac{38637}{82223}a^{3}-\frac{281646}{82223}a^{2}-\frac{52193}{82223}a-\frac{16657}{82223}$, $\frac{85003}{82223}a^{16}-\frac{128032}{82223}a^{15}+\frac{72930}{82223}a^{14}-\frac{41874}{82223}a^{13}+\frac{178037}{82223}a^{12}+\frac{8120}{82223}a^{11}-\frac{444221}{82223}a^{10}+\frac{346669}{82223}a^{9}+\frac{9166}{82223}a^{8}+\frac{259778}{82223}a^{7}-\frac{217897}{82223}a^{6}-\frac{492715}{82223}a^{5}+\frac{464677}{82223}a^{4}+\frac{179230}{82223}a^{3}-\frac{30487}{82223}a^{2}-\frac{257568}{82223}a-\frac{160758}{82223}$, $\frac{54533}{82223}a^{16}-\frac{131410}{82223}a^{15}+\frac{128350}{82223}a^{14}-\frac{87494}{82223}a^{13}+\frac{156549}{82223}a^{12}-\frac{104540}{82223}a^{11}-\frac{255867}{82223}a^{10}+\frac{423043}{82223}a^{9}-\frac{204280}{82223}a^{8}+\frac{199208}{82223}a^{7}-\frac{249315}{82223}a^{6}-\frac{241931}{82223}a^{5}+\frac{510554}{82223}a^{4}-\frac{119453}{82223}a^{3}-\frac{78762}{82223}a^{2}-\frac{110604}{82223}a-\frac{81099}{82223}$, $\frac{3613}{82223}a^{16}-\frac{17566}{82223}a^{15}+\frac{12264}{82223}a^{14}+\frac{29399}{82223}a^{13}-\frac{43294}{82223}a^{12}+\frac{18243}{82223}a^{11}-\frac{62369}{82223}a^{10}+\frac{147710}{82223}a^{9}-\frac{43869}{82223}a^{8}-\frac{130225}{82223}a^{7}+\frac{76671}{82223}a^{6}-\frac{11997}{82223}a^{5}+\frac{139353}{82223}a^{4}-\frac{37100}{82223}a^{3}-\frac{160975}{82223}a^{2}+\frac{115647}{82223}a+\frac{41823}{82223}$, $\frac{61240}{82223}a^{16}-\frac{91058}{82223}a^{15}+\frac{67983}{82223}a^{14}-\frac{63528}{82223}a^{13}+\frac{160383}{82223}a^{12}-\frac{25205}{82223}a^{11}-\frac{250735}{82223}a^{10}+\frac{207639}{82223}a^{9}-\frac{22275}{82223}a^{8}+\frac{229622}{82223}a^{7}-\frac{123941}{82223}a^{6}-\frac{277310}{82223}a^{5}+\frac{287283}{82223}a^{4}+\frac{61850}{82223}a^{3}+\frac{74331}{82223}a^{2}-\frac{100490}{82223}a-\frac{85570}{82223}$, $\frac{24715}{82223}a^{16}-\frac{63427}{82223}a^{15}+\frac{64822}{82223}a^{14}-\frac{49591}{82223}a^{13}+\frac{70104}{82223}a^{12}-\frac{49075}{82223}a^{11}-\frac{109468}{82223}a^{10}+\frac{217048}{82223}a^{9}-\frac{158378}{82223}a^{8}+\frac{136507}{82223}a^{7}-\frac{97945}{82223}a^{6}-\frac{77128}{82223}a^{5}+\frac{204964}{82223}a^{4}-\frac{106362}{82223}a^{3}+\frac{86691}{82223}a^{2}-\frac{12454}{82223}a-\frac{19859}{82223}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 32.0498639783 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{8}\cdot 32.0498639783 \cdot 1}{2\cdot\sqrt{231494845017984433}}\cr\approx \mathstrut & 0.161805945405 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^17 - x^16 + 2*x^13 + x^12 - 5*x^11 + x^10 + 3*x^9 + 3*x^8 - x^7 - 7*x^6 + 2*x^5 + 6*x^4 + x^3 - 3*x^2 - 3*x - 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^17 - x^16 + 2*x^13 + x^12 - 5*x^11 + x^10 + 3*x^9 + 3*x^8 - x^7 - 7*x^6 + 2*x^5 + 6*x^4 + x^3 - 3*x^2 - 3*x - 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^17 - x^16 + 2*x^13 + x^12 - 5*x^11 + x^10 + 3*x^9 + 3*x^8 - x^7 - 7*x^6 + 2*x^5 + 6*x^4 + x^3 - 3*x^2 - 3*x - 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^17 - x^16 + 2*x^13 + x^12 - 5*x^11 + x^10 + 3*x^9 + 3*x^8 - x^7 - 7*x^6 + 2*x^5 + 6*x^4 + x^3 - 3*x^2 - 3*x - 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_{17}$ (as 17T10):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 355687428096000
The 297 conjugacy class representatives for $S_{17}$
Character table for $S_{17}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $17$ $17$ ${\href{/padicField/5.12.0.1}{12} }{,}\,{\href{/padicField/5.5.0.1}{5} }$ $17$ ${\href{/padicField/11.14.0.1}{14} }{,}\,{\href{/padicField/11.3.0.1}{3} }$ ${\href{/padicField/13.10.0.1}{10} }{,}\,{\href{/padicField/13.7.0.1}{7} }$ $15{,}\,{\href{/padicField/17.2.0.1}{2} }$ $17$ ${\href{/padicField/23.9.0.1}{9} }{,}\,{\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.2.0.1}{2} }$ ${\href{/padicField/29.9.0.1}{9} }{,}\,{\href{/padicField/29.5.0.1}{5} }{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ ${\href{/padicField/31.10.0.1}{10} }{,}\,{\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.3.0.1}{3} }^{3}$ ${\href{/padicField/41.10.0.1}{10} }{,}\,{\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.13.0.1}{13} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ $16{,}\,{\href{/padicField/47.1.0.1}{1} }$ ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.7.0.1}{7} }{,}\,{\href{/padicField/53.2.0.1}{2} }$ R

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(59\) Copy content Toggle raw display $\Q_{59}$$x + 57$$1$$1$$0$Trivial$[\ ]$
59.2.0.1$x^{2} + 58 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
59.4.2.1$x^{4} + 116 x^{3} + 3486 x^{2} + 7076 x + 201725$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
59.10.0.1$x^{10} + x^{6} + 28 x^{5} + 25 x^{4} + 4 x^{3} + 39 x^{2} + 15 x + 2$$1$$10$$0$$C_{10}$$[\ ]^{10}$
\(1217\) Copy content Toggle raw display Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $15$$1$$15$$0$$C_{15}$$[\ ]^{15}$
\(1579\) Copy content Toggle raw display $\Q_{1579}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $14$$1$$14$$0$$C_{14}$$[\ ]^{14}$
\(34607051\) Copy content Toggle raw display $\Q_{34607051}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $14$$1$$14$$0$$C_{14}$$[\ ]^{14}$