Normalized defining polynomial
\( x^{17} - 2 x^{16} + 4 x^{15} - 18 x^{14} + 10 x^{13} - 16 x^{12} + 44 x^{11} + 10 x^{10} + 72 x^{9} + 18 x^{8} + 134 x^{7} + 88 x^{6} + 275 x^{5} + 200 x^{4} + 220 x^{3} + 240 x^{2} + 80 x + 64 \)
Invariants
| Degree: | $17$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2007233999721653909999521=1091^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $1091$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{4}$, $\frac{1}{16} a^{11} + \frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{3}{16} a^{5} + \frac{1}{16} a^{4} + \frac{7}{16} a^{3} + \frac{3}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{16} a^{12} - \frac{1}{8} a^{10} + \frac{1}{16} a^{9} - \frac{1}{8} a^{8} - \frac{1}{16} a^{6} - \frac{1}{4} a^{5} - \frac{1}{8} a^{4} - \frac{1}{16} a^{3} + \frac{3}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{10} - \frac{1}{16} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{16} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{32} a^{14} - \frac{1}{32} a^{12} - \frac{1}{32} a^{10} + \frac{1}{16} a^{9} + \frac{1}{32} a^{8} + \frac{1}{16} a^{7} + \frac{3}{32} a^{6} + \frac{1}{16} a^{5} - \frac{5}{32} a^{4} + \frac{1}{4} a$, $\frac{1}{32} a^{15} - \frac{1}{32} a^{13} - \frac{1}{32} a^{11} + \frac{1}{16} a^{10} + \frac{1}{32} a^{9} + \frac{1}{16} a^{8} + \frac{3}{32} a^{7} + \frac{1}{16} a^{6} - \frac{5}{32} a^{5} + \frac{1}{4} a^{2}$, $\frac{1}{8286671488} a^{16} - \frac{68849395}{8286671488} a^{15} + \frac{120169979}{8286671488} a^{14} - \frac{31185489}{8286671488} a^{13} - \frac{231372529}{8286671488} a^{12} - \frac{155375939}{8286671488} a^{11} + \frac{626061315}{8286671488} a^{10} + \frac{5191329}{123681664} a^{9} - \frac{370481855}{8286671488} a^{8} + \frac{21699013}{8286671488} a^{7} + \frac{508174493}{8286671488} a^{6} + \frac{100883231}{487451264} a^{5} - \frac{61534825}{258958484} a^{4} + \frac{612237787}{2071667872} a^{3} - \frac{15242284}{64739621} a^{2} + \frac{225047811}{517916968} a - \frac{42857061}{129479242}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1757145.67579 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 34 |
| The 10 conjugacy class representatives for $D_{17}$ |
| Character table for $D_{17}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }$ | $17$ | $17$ | $17$ | $17$ | $17$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $17$ | $17$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | $17$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $17$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $17$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 1091 | Data not computed | ||||||