Normalized defining polynomial
\( x^{17} - 4 x^{16} + x^{15} + 16 x^{14} - 30 x^{13} - 2 x^{12} + 88 x^{11} + 143 x^{10} + 133 x^{9} - 515 x^{8} - 803 x^{7} - 68 x^{6} + 1252 x^{5} + 2972 x^{4} + 2855 x^{3} + 1505 x^{2} + \cdots + 125 \)
Invariants
Degree: | $17$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[1, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(16071318903145633687890625\)
\(\medspace = 5^{8}\cdot 283^{8}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(30.39\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Ramified primes: |
\(5\), \(283\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{5}a^{7}-\frac{1}{5}a^{6}+\frac{1}{5}a^{5}+\frac{1}{5}a^{4}+\frac{2}{5}a^{2}$, $\frac{1}{5}a^{8}+\frac{2}{5}a^{5}+\frac{1}{5}a^{4}+\frac{2}{5}a^{3}+\frac{2}{5}a^{2}$, $\frac{1}{5}a^{9}+\frac{2}{5}a^{6}+\frac{1}{5}a^{5}+\frac{2}{5}a^{4}+\frac{2}{5}a^{3}$, $\frac{1}{5}a^{10}-\frac{2}{5}a^{6}+\frac{1}{5}a^{2}$, $\frac{1}{25}a^{11}-\frac{2}{25}a^{10}+\frac{2}{25}a^{9}+\frac{2}{25}a^{8}+\frac{2}{25}a^{7}+\frac{4}{25}a^{6}-\frac{1}{5}a^{5}-\frac{2}{5}a^{4}+\frac{9}{25}a^{3}+\frac{2}{5}a$, $\frac{1}{25}a^{12}-\frac{2}{25}a^{10}+\frac{1}{25}a^{9}+\frac{1}{25}a^{8}-\frac{2}{25}a^{7}+\frac{3}{25}a^{6}+\frac{1}{5}a^{5}-\frac{11}{25}a^{4}-\frac{2}{25}a^{3}+\frac{1}{5}a^{2}-\frac{1}{5}a$, $\frac{1}{125}a^{13}-\frac{2}{125}a^{11}+\frac{11}{125}a^{10}+\frac{6}{125}a^{9}-\frac{2}{125}a^{8}-\frac{2}{125}a^{7}-\frac{1}{5}a^{6}-\frac{11}{125}a^{5}+\frac{3}{125}a^{4}+\frac{8}{25}a^{3}-\frac{1}{25}a^{2}+\frac{1}{5}a$, $\frac{1}{125}a^{14}-\frac{2}{125}a^{12}+\frac{1}{125}a^{11}+\frac{1}{125}a^{10}+\frac{3}{125}a^{9}+\frac{3}{125}a^{8}+\frac{1}{25}a^{7}-\frac{1}{125}a^{6}+\frac{53}{125}a^{5}+\frac{3}{25}a^{4}+\frac{1}{25}a^{3}+\frac{1}{5}a^{2}+\frac{1}{5}a$, $\frac{1}{875}a^{15}+\frac{2}{875}a^{14}+\frac{3}{875}a^{13}+\frac{1}{125}a^{12}+\frac{3}{875}a^{11}-\frac{1}{175}a^{10}-\frac{8}{125}a^{9}+\frac{81}{875}a^{8}+\frac{24}{875}a^{7}-\frac{229}{875}a^{6}-\frac{184}{875}a^{5}+\frac{8}{175}a^{4}+\frac{8}{25}a^{3}-\frac{1}{35}a^{2}-\frac{1}{35}a-\frac{2}{7}$, $\frac{1}{2615944069375}a^{16}+\frac{218937184}{2615944069375}a^{15}+\frac{368743109}{373706295625}a^{14}+\frac{737489092}{523188813875}a^{13}+\frac{7919246736}{523188813875}a^{12}-\frac{35805577492}{2615944069375}a^{11}+\frac{196162750347}{2615944069375}a^{10}-\frac{26640288041}{2615944069375}a^{9}-\frac{46749711864}{523188813875}a^{8}+\frac{47954499897}{523188813875}a^{7}+\frac{710493631017}{2615944069375}a^{6}-\frac{229449530337}{2615944069375}a^{5}+\frac{171732759551}{2615944069375}a^{4}+\frac{244902547024}{523188813875}a^{3}+\frac{33135306798}{523188813875}a^{2}-\frac{52235576909}{104637762775}a-\frac{4281699832}{20927552555}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $5$ |
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $8$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{637787931}{74741259125}a^{16}-\frac{19735843466}{523188813875}a^{15}+\frac{11717674662}{523188813875}a^{14}+\frac{70392364229}{523188813875}a^{13}-\frac{23053849088}{74741259125}a^{12}+\frac{32519538196}{523188813875}a^{11}+\frac{411351224579}{523188813875}a^{10}+\frac{14773405428}{14948251825}a^{9}+\frac{195075083156}{523188813875}a^{8}-\frac{2577709140988}{523188813875}a^{7}-\frac{2331344948939}{523188813875}a^{6}+\frac{1230023036703}{523188813875}a^{5}+\frac{45790807938}{4185510511}a^{4}+\frac{302154989063}{14948251825}a^{3}+\frac{248973906373}{20927552555}a^{2}+\frac{74183967756}{20927552555}a+\frac{3563748152}{4185510511}$, $\frac{13166742333}{2615944069375}a^{16}-\frac{53402672318}{2615944069375}a^{15}+\frac{2871733867}{373706295625}a^{14}+\frac{37450696694}{523188813875}a^{13}-\frac{74800927391}{523188813875}a^{12}+\frac{37313929019}{2615944069375}a^{11}+\frac{993139224656}{2615944069375}a^{10}+\frac{1892906104857}{2615944069375}a^{9}+\frac{405726948453}{523188813875}a^{8}-\frac{258072843687}{104637762775}a^{7}-\frac{11520362899249}{2615944069375}a^{6}-\frac{2748375903186}{2615944069375}a^{5}+\frac{17611993464788}{2615944069375}a^{4}+\frac{8695071255982}{523188813875}a^{3}+\frac{8193945281974}{523188813875}a^{2}+\frac{614710345213}{104637762775}a+\frac{12004814404}{20927552555}$, $\frac{2547137324}{373706295625}a^{16}-\frac{67002087273}{2615944069375}a^{15}-\frac{28336310671}{2615944069375}a^{14}+\frac{88188732467}{523188813875}a^{13}-\frac{19696775886}{74741259125}a^{12}-\frac{311794279516}{2615944069375}a^{11}+\frac{2531811900446}{2615944069375}a^{10}+\frac{258786396636}{373706295625}a^{9}+\frac{418340941386}{523188813875}a^{8}-\frac{2432027134891}{523188813875}a^{7}-\frac{15943929525444}{2615944069375}a^{6}+\frac{9019097649209}{2615944069375}a^{5}+\frac{27103434402048}{2615944069375}a^{4}+\frac{1518813599661}{74741259125}a^{3}+\frac{6515865863629}{523188813875}a^{2}-\frac{149264678022}{104637762775}a-\frac{38200000086}{20927552555}$, $\frac{1665828917}{523188813875}a^{16}-\frac{1619984766}{104637762775}a^{15}+\frac{957469116}{74741259125}a^{14}+\frac{30931238523}{523188813875}a^{13}-\frac{18102605051}{104637762775}a^{12}+\frac{12183650057}{104637762775}a^{11}+\frac{164619280093}{523188813875}a^{10}+\frac{23782956304}{523188813875}a^{9}+\frac{123107642674}{523188813875}a^{8}-\frac{1176423255136}{523188813875}a^{7}-\frac{339794484966}{523188813875}a^{6}+\frac{1128233959542}{523188813875}a^{5}+\frac{1575932467653}{523188813875}a^{4}+\frac{649956666822}{104637762775}a^{3}-\frac{28896962441}{104637762775}a^{2}-\frac{24991638104}{20927552555}a-\frac{2972644096}{4185510511}$, $\frac{3564399001}{2615944069375}a^{16}-\frac{12800355101}{2615944069375}a^{15}-\frac{4652689257}{2615944069375}a^{14}+\frac{13536537366}{523188813875}a^{13}-\frac{15913871858}{523188813875}a^{12}-\frac{17238456946}{373706295625}a^{11}+\frac{440018412297}{2615944069375}a^{10}+\frac{653868099669}{2615944069375}a^{9}+\frac{49279812934}{523188813875}a^{8}-\frac{47658341973}{74741259125}a^{7}-\frac{3955173682518}{2615944069375}a^{6}+\frac{343300369028}{2615944069375}a^{5}+\frac{6118823155576}{2615944069375}a^{4}+\frac{1965682977514}{523188813875}a^{3}+\frac{2155287959173}{523188813875}a^{2}+\frac{19845053193}{14948251825}a+\frac{4062812458}{20927552555}$, $\frac{1407393157}{373706295625}a^{16}-\frac{9024916747}{373706295625}a^{15}+\frac{19306766671}{373706295625}a^{14}-\frac{139502178}{14948251825}a^{13}-\frac{12714319477}{74741259125}a^{12}+\frac{124650242656}{373706295625}a^{11}-\frac{29838771061}{373706295625}a^{10}+\frac{99067161333}{373706295625}a^{9}-\frac{33161347594}{74741259125}a^{8}-\frac{149390155078}{74741259125}a^{7}+\frac{699414079859}{373706295625}a^{6}+\frac{547092284296}{373706295625}a^{5}+\frac{1088517791337}{373706295625}a^{4}+\frac{72258209548}{74741259125}a^{3}-\frac{354827466699}{74741259125}a^{2}-\frac{13096115938}{14948251825}a-\frac{3710357944}{2989650365}$, $\frac{26682634334}{523188813875}a^{16}-\frac{115269991652}{523188813875}a^{15}+\frac{8698387733}{74741259125}a^{14}+\frac{420847695591}{523188813875}a^{13}-\frac{950062980436}{523188813875}a^{12}+\frac{215767701533}{523188813875}a^{11}+\frac{2408079371463}{523188813875}a^{10}+\frac{2918593963764}{523188813875}a^{9}+\frac{2461194816832}{523188813875}a^{8}-\frac{14669613961787}{523188813875}a^{7}-\frac{3393405721614}{104637762775}a^{6}+\frac{5281809739604}{523188813875}a^{5}+\frac{32271323889529}{523188813875}a^{4}+\frac{13627198799863}{104637762775}a^{3}+\frac{10342688082707}{104637762775}a^{2}+\frac{730359633127}{20927552555}a+\frac{61559023803}{4185510511}$, $\frac{28692107627}{2615944069375}a^{16}-\frac{165623700257}{2615944069375}a^{15}+\frac{306890546141}{2615944069375}a^{14}-\frac{144266471}{523188813875}a^{13}-\frac{198988531614}{523188813875}a^{12}+\frac{234493920708}{373706295625}a^{11}+\frac{180546534134}{2615944069375}a^{10}+\frac{3066531320213}{2615944069375}a^{9}-\frac{419668759404}{523188813875}a^{8}-\frac{358934565213}{74741259125}a^{7}+\frac{58372524419}{2615944069375}a^{6}+\frac{4845469231446}{2615944069375}a^{5}+\frac{28928181591077}{2615944069375}a^{4}+\frac{6137692964538}{523188813875}a^{3}+\frac{2308513454971}{523188813875}a^{2}+\frac{21767117471}{14948251825}a+\frac{14326819786}{20927552555}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 2534195.05633 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{8}\cdot 2534195.05633 \cdot 1}{2\cdot\sqrt{16071318903145633687890625}}\cr\approx \mathstrut & 1.53551204241 \end{aligned}\] (assuming GRH)
Galois group
A solvable group of order 34 |
The 10 conjugacy class representatives for $D_{17}$ |
Character table for $D_{17}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Galois closure: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $17$ | $17$ | R | ${\href{/padicField/7.2.0.1}{2} }^{8}{,}\,{\href{/padicField/7.1.0.1}{1} }$ | $17$ | ${\href{/padicField/13.2.0.1}{2} }^{8}{,}\,{\href{/padicField/13.1.0.1}{1} }$ | $17$ | ${\href{/padicField/19.2.0.1}{2} }^{8}{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.2.0.1}{2} }^{8}{,}\,{\href{/padicField/23.1.0.1}{1} }$ | $17$ | ${\href{/padicField/31.2.0.1}{2} }^{8}{,}\,{\href{/padicField/31.1.0.1}{1} }$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\)
| $\Q_{5}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
\(283\)
| $\Q_{283}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |