Normalized defining polynomial
\( x^{17} - 4 x^{16} + x^{15} + 16 x^{14} - 30 x^{13} - 2 x^{12} + 88 x^{11} + 143 x^{10} + 133 x^{9} - 515 x^{8} - 803 x^{7} - 68 x^{6} + 1252 x^{5} + 2972 x^{4} + 2855 x^{3} + 1505 x^{2} + 550 x + 125 \)
Invariants
| Degree: | $17$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16071318903145633687890625=5^{8}\cdot 283^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 283$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{5} a^{7} - \frac{1}{5} a^{6} + \frac{1}{5} a^{5} + \frac{1}{5} a^{4} + \frac{2}{5} a^{2}$, $\frac{1}{5} a^{8} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2}$, $\frac{1}{5} a^{9} + \frac{2}{5} a^{6} + \frac{1}{5} a^{5} + \frac{2}{5} a^{4} + \frac{2}{5} a^{3}$, $\frac{1}{5} a^{10} - \frac{2}{5} a^{6} + \frac{1}{5} a^{2}$, $\frac{1}{25} a^{11} - \frac{2}{25} a^{10} + \frac{2}{25} a^{9} + \frac{2}{25} a^{8} + \frac{2}{25} a^{7} + \frac{4}{25} a^{6} - \frac{1}{5} a^{5} - \frac{2}{5} a^{4} + \frac{9}{25} a^{3} + \frac{2}{5} a$, $\frac{1}{25} a^{12} - \frac{2}{25} a^{10} + \frac{1}{25} a^{9} + \frac{1}{25} a^{8} - \frac{2}{25} a^{7} + \frac{3}{25} a^{6} + \frac{1}{5} a^{5} - \frac{11}{25} a^{4} - \frac{2}{25} a^{3} + \frac{1}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{125} a^{13} - \frac{2}{125} a^{11} + \frac{11}{125} a^{10} + \frac{6}{125} a^{9} - \frac{2}{125} a^{8} - \frac{2}{125} a^{7} - \frac{1}{5} a^{6} - \frac{11}{125} a^{5} + \frac{3}{125} a^{4} + \frac{8}{25} a^{3} - \frac{1}{25} a^{2} + \frac{1}{5} a$, $\frac{1}{125} a^{14} - \frac{2}{125} a^{12} + \frac{1}{125} a^{11} + \frac{1}{125} a^{10} + \frac{3}{125} a^{9} + \frac{3}{125} a^{8} + \frac{1}{25} a^{7} - \frac{1}{125} a^{6} + \frac{53}{125} a^{5} + \frac{3}{25} a^{4} + \frac{1}{25} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{875} a^{15} + \frac{2}{875} a^{14} + \frac{3}{875} a^{13} + \frac{1}{125} a^{12} + \frac{3}{875} a^{11} - \frac{1}{175} a^{10} - \frac{8}{125} a^{9} + \frac{81}{875} a^{8} + \frac{24}{875} a^{7} - \frac{229}{875} a^{6} - \frac{184}{875} a^{5} + \frac{8}{175} a^{4} + \frac{8}{25} a^{3} - \frac{1}{35} a^{2} - \frac{1}{35} a - \frac{2}{7}$, $\frac{1}{2615944069375} a^{16} + \frac{218937184}{2615944069375} a^{15} + \frac{368743109}{373706295625} a^{14} + \frac{737489092}{523188813875} a^{13} + \frac{7919246736}{523188813875} a^{12} - \frac{35805577492}{2615944069375} a^{11} + \frac{196162750347}{2615944069375} a^{10} - \frac{26640288041}{2615944069375} a^{9} - \frac{46749711864}{523188813875} a^{8} + \frac{47954499897}{523188813875} a^{7} + \frac{710493631017}{2615944069375} a^{6} - \frac{229449530337}{2615944069375} a^{5} + \frac{171732759551}{2615944069375} a^{4} + \frac{244902547024}{523188813875} a^{3} + \frac{33135306798}{523188813875} a^{2} - \frac{52235576909}{104637762775} a - \frac{4281699832}{20927552555}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2534195.05633 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 34 |
| The 10 conjugacy class representatives for $D_{17}$ |
| Character table for $D_{17}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $17$ | $17$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | $17$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | $17$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $17$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 283 | Data not computed | ||||||