Properties

Label 17.1.138...456.1
Degree $17$
Signature $[1, 8]$
Discriminant $1.388\times 10^{28}$
Root discriminant \(45.23\)
Ramified primes $2,229,71347,50631461593807$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $S_{17}$ (as 17T10)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^17 - x - 8)
 
gp: K = bnfinit(y^17 - y - 8, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^17 - x - 8);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^17 - x - 8)
 

\( x^{17} - x - 8 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $17$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 8]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(13878788557563638241826963456\) \(\medspace = 2^{24}\cdot 229\cdot 71347\cdot 50631461593807\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(45.23\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(229\), \(71347\), \(50631461593807\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  $\Q(\sqrt{82724\!\cdots\!98641}$)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2}a^{9}-\frac{1}{2}a$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{4}$, $\frac{1}{4}a^{13}-\frac{1}{4}a^{9}+\frac{1}{4}a^{5}-\frac{1}{4}a$, $\frac{1}{4}a^{14}-\frac{1}{4}a^{10}+\frac{1}{4}a^{6}-\frac{1}{4}a^{2}$, $\frac{1}{4}a^{15}-\frac{1}{4}a^{11}+\frac{1}{4}a^{7}-\frac{1}{4}a^{3}$, $\frac{1}{4}a^{16}-\frac{1}{4}a^{12}+\frac{1}{4}a^{8}-\frac{1}{4}a^{4}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $8$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{1}{4}a^{13}-\frac{1}{4}a^{9}+\frac{1}{4}a^{5}-\frac{1}{4}a-1$, $\frac{1}{4}a^{15}-\frac{1}{4}a^{13}+\frac{1}{4}a^{11}-\frac{1}{4}a^{9}+\frac{1}{4}a^{7}-\frac{1}{4}a^{5}+\frac{1}{4}a^{3}-\frac{1}{4}a-1$, $\frac{1}{4}a^{16}-\frac{1}{4}a^{15}+\frac{1}{4}a^{14}-\frac{1}{4}a^{13}+\frac{1}{4}a^{12}-\frac{1}{4}a^{11}+\frac{1}{4}a^{10}-\frac{1}{4}a^{9}+\frac{1}{4}a^{8}-\frac{1}{4}a^{7}+\frac{1}{4}a^{6}-\frac{1}{4}a^{5}+\frac{1}{4}a^{4}-\frac{1}{4}a^{3}+\frac{1}{4}a^{2}-\frac{1}{4}a-1$, $\frac{1}{4}a^{16}-a^{15}+\frac{1}{4}a^{14}-\frac{1}{4}a^{13}-\frac{1}{4}a^{12}-\frac{5}{4}a^{10}+\frac{5}{4}a^{9}+\frac{1}{4}a^{8}+\frac{1}{4}a^{6}+\frac{3}{4}a^{5}+\frac{11}{4}a^{4}-a^{3}+\frac{3}{4}a^{2}-\frac{3}{4}a+1$, $\frac{1}{2}a^{16}-\frac{1}{2}a^{15}-\frac{3}{4}a^{14}+\frac{3}{4}a^{13}+a^{12}-\frac{1}{2}a^{11}-\frac{3}{4}a^{10}+\frac{1}{4}a^{9}+\frac{3}{2}a^{8}+\frac{1}{2}a^{7}-\frac{11}{4}a^{6}-\frac{1}{4}a^{5}+4a^{4}+\frac{1}{2}a^{3}-\frac{11}{4}a^{2}-\frac{3}{4}a+3$, $\frac{1}{2}a^{16}-a^{14}+\frac{3}{4}a^{13}-a^{12}-\frac{1}{2}a^{11}-a^{10}-\frac{1}{4}a^{9}+\frac{1}{2}a^{8}-2a^{7}+3a^{6}-\frac{1}{4}a^{5}+\frac{7}{2}a^{3}+a^{2}+\frac{15}{4}a-3$, $\frac{1}{4}a^{16}-\frac{5}{4}a^{15}-\frac{1}{2}a^{14}-\frac{7}{4}a^{13}-\frac{3}{4}a^{12}-\frac{3}{4}a^{11}-a^{10}+\frac{3}{4}a^{9}+\frac{1}{4}a^{8}+\frac{7}{4}a^{7}+\frac{3}{2}a^{6}+\frac{5}{4}a^{5}+\frac{17}{4}a^{4}+\frac{9}{4}a^{3}+4a^{2}+\frac{7}{4}a-1$, $\frac{11}{4}a^{16}+\frac{7}{2}a^{15}+3a^{14}-\frac{1}{2}a^{13}-\frac{17}{4}a^{12}-\frac{15}{2}a^{11}-\frac{11}{2}a^{10}+\frac{1}{2}a^{9}+\frac{23}{4}a^{8}+\frac{21}{2}a^{7}+9a^{6}+\frac{9}{2}a^{5}-\frac{29}{4}a^{4}-\frac{39}{2}a^{3}-\frac{39}{2}a^{2}-\frac{19}{2}a+9$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 51058416.8278 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{8}\cdot 51058416.8278 \cdot 1}{2\cdot\sqrt{13878788557563638241826963456}}\cr\approx \mathstrut & 1.05276275435 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^17 - x - 8)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^17 - x - 8, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^17 - x - 8);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^17 - x - 8);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_{17}$ (as 17T10):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 355687428096000
The 297 conjugacy class representatives for $S_{17}$
Character table for $S_{17}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R $17$ ${\href{/padicField/5.12.0.1}{12} }{,}\,{\href{/padicField/5.3.0.1}{3} }{,}\,{\href{/padicField/5.2.0.1}{2} }$ ${\href{/padicField/7.11.0.1}{11} }{,}\,{\href{/padicField/7.6.0.1}{6} }$ ${\href{/padicField/11.13.0.1}{13} }{,}\,{\href{/padicField/11.4.0.1}{4} }$ ${\href{/padicField/13.10.0.1}{10} }{,}\,{\href{/padicField/13.7.0.1}{7} }$ $17$ ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.5.0.1}{5} }{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ $17$ $16{,}\,{\href{/padicField/29.1.0.1}{1} }$ ${\href{/padicField/31.6.0.1}{6} }^{2}{,}\,{\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ ${\href{/padicField/37.10.0.1}{10} }{,}\,{\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.3.0.1}{3} }$ $16{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.10.0.1}{10} }{,}\,{\href{/padicField/43.7.0.1}{7} }$ $16{,}\,{\href{/padicField/47.1.0.1}{1} }$ ${\href{/padicField/53.7.0.1}{7} }{,}\,{\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{3}{,}\,{\href{/padicField/53.1.0.1}{1} }$ ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display $\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
2.8.8.11$x^{8} + 4 x^{7} + 14 x^{6} + 32 x^{5} + 55 x^{4} + 60 x^{3} + 36 x^{2} + 18 x + 9$$4$$2$$8$$S_4$$[4/3, 4/3]_{3}^{2}$
2.8.16.63$x^{8} + 2 x^{4} + 4 x + 6$$8$$1$$16$$V_4^2:(S_3\times C_2)$$[4/3, 4/3, 2, 7/3, 7/3]_{3}^{2}$
\(229\) Copy content Toggle raw display $\Q_{229}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{229}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $9$$1$$9$$0$$C_9$$[\ ]^{9}$
\(71347\) Copy content Toggle raw display $\Q_{71347}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $11$$1$$11$$0$$C_{11}$$[\ ]^{11}$
\(50631461593807\) Copy content Toggle raw display $\Q_{50631461593807}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $8$$1$$8$$0$$C_8$$[\ ]^{8}$