magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 5, 12, 28, 72, 132, 116, 0, -74, -90, -28, 12, 24, 12, -4, 0, -3, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^17 - 3*x^16 - 4*x^14 + 12*x^13 + 24*x^12 + 12*x^11 - 28*x^10 - 90*x^9 - 74*x^8 + 116*x^6 + 132*x^5 + 72*x^4 + 28*x^3 + 12*x^2 + 5*x + 1)
gp: K = bnfinit(x^17 - 3*x^16 - 4*x^14 + 12*x^13 + 24*x^12 + 12*x^11 - 28*x^10 - 90*x^9 - 74*x^8 + 116*x^6 + 132*x^5 + 72*x^4 + 28*x^3 + 12*x^2 + 5*x + 1, 1)
\( x^{17} - 3 x^{16} - 4 x^{14} + 12 x^{13} + 24 x^{12} + 12 x^{11} - 28 x^{10} - 90 x^{9} - 74 x^{8} + 116 x^{6} + 132 x^{5} + 72 x^{4} + 28 x^{3} + 12 x^{2} + 5 x + 1 \)
magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
| Degree: | | $17$ |
|
| Signature: | | $[1, 8]$ |
|
| Discriminant: | | \(133249137678121328919445504=2^{30}\cdot 137^{8}\) | magma: Discriminant(Integers(K));
|
| Root discriminant: | | $34.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
|
| Ramified primes: | | $2, 137$ | magma: PrimeDivisors(Discriminant(Integers(K)));
gp: factor(abs(K.disc))[,1]~
|
| This field is not Galois over $\Q$. |
| This is not a CM field. |
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8} + \frac{1}{4} a^{4} - \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{8} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4}$, $\frac{1}{8844} a^{16} - \frac{29}{2211} a^{15} - \frac{79}{4422} a^{14} + \frac{27}{1474} a^{13} - \frac{101}{1474} a^{12} - \frac{13}{2948} a^{11} - \frac{1}{2948} a^{10} + \frac{311}{8844} a^{9} + \frac{13}{804} a^{8} + \frac{611}{1474} a^{7} - \frac{251}{737} a^{6} + \frac{100}{201} a^{5} - \frac{41}{201} a^{4} + \frac{2723}{8844} a^{3} - \frac{851}{2948} a^{2} - \frac{1117}{2948} a - \frac{406}{2211}$
$C_{15}$, which has order $15$
sage: K.class_group().invariants()
magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
| Rank: | | $8$
|
|
| Torsion generator: | | \( -1 \) (order $2$)
| magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
|
| Fundamental units: | | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
| magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
|
| Regulator: | | \( 810656.541895 \)
|
|
$\PSL(2,16)$ (as 17T6):
sage: K.galois_group(type='pari')
|
The extension is primitive: there are no intermediate fields
between this field and $\Q$.
|
| $p$ |
2 |
3 |
5 |
7 |
11 |
13 |
17 |
19 |
23 |
29 |
31 |
37 |
41 |
43 |
47 |
53 |
59 |
| Cycle type |
R |
$15{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ |
$17$ |
$15{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ |
$15{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ |
$17$ |
$17$ |
$17$ |
$15{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ |
$17$ |
$17$ |
$17$ |
$15{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ |
$17$ |
$17$ |
${\href{/LocalNumberField/53.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ |
${\href{/LocalNumberField/59.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime.
Cycle lengths which are repeated in a cycle type are indicated by
exponents.
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
|
Label |
Dimension |
Conductor |
Defining polynomial of Artin field |
$G$ |
Ind |
$\chi(c)$ |
|
*
| 1.1.1t1.1c1 | $1$ |
$1$ |
$x$ |
$C_1$ |
$1$ |
$1$ |
|
| 15.2e30_137e8.240.1c1 | $15$ |
$ 2^{30} \cdot 137^{8}$ |
$x^{17} - 3 x^{16} - 4 x^{14} + 12 x^{13} + 24 x^{12} + 12 x^{11} - 28 x^{10} - 90 x^{9} - 74 x^{8} + 116 x^{6} + 132 x^{5} + 72 x^{4} + 28 x^{3} + 12 x^{2} + 5 x + 1$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$-1$ |
|
| 15.2e30_137e8.240.1c2 | $15$ |
$ 2^{30} \cdot 137^{8}$ |
$x^{17} - 3 x^{16} - 4 x^{14} + 12 x^{13} + 24 x^{12} + 12 x^{11} - 28 x^{10} - 90 x^{9} - 74 x^{8} + 116 x^{6} + 132 x^{5} + 72 x^{4} + 28 x^{3} + 12 x^{2} + 5 x + 1$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$-1$ |
|
| 15.2e30_137e8.240.1c3 | $15$ |
$ 2^{30} \cdot 137^{8}$ |
$x^{17} - 3 x^{16} - 4 x^{14} + 12 x^{13} + 24 x^{12} + 12 x^{11} - 28 x^{10} - 90 x^{9} - 74 x^{8} + 116 x^{6} + 132 x^{5} + 72 x^{4} + 28 x^{3} + 12 x^{2} + 5 x + 1$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$-1$ |
|
| 15.2e30_137e8.240.1c4 | $15$ |
$ 2^{30} \cdot 137^{8}$ |
$x^{17} - 3 x^{16} - 4 x^{14} + 12 x^{13} + 24 x^{12} + 12 x^{11} - 28 x^{10} - 90 x^{9} - 74 x^{8} + 116 x^{6} + 132 x^{5} + 72 x^{4} + 28 x^{3} + 12 x^{2} + 5 x + 1$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$-1$ |
|
| 15.2e30_137e8.240.1c5 | $15$ |
$ 2^{30} \cdot 137^{8}$ |
$x^{17} - 3 x^{16} - 4 x^{14} + 12 x^{13} + 24 x^{12} + 12 x^{11} - 28 x^{10} - 90 x^{9} - 74 x^{8} + 116 x^{6} + 132 x^{5} + 72 x^{4} + 28 x^{3} + 12 x^{2} + 5 x + 1$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$-1$ |
|
| 15.2e30_137e8.240.1c6 | $15$ |
$ 2^{30} \cdot 137^{8}$ |
$x^{17} - 3 x^{16} - 4 x^{14} + 12 x^{13} + 24 x^{12} + 12 x^{11} - 28 x^{10} - 90 x^{9} - 74 x^{8} + 116 x^{6} + 132 x^{5} + 72 x^{4} + 28 x^{3} + 12 x^{2} + 5 x + 1$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$-1$ |
|
| 15.2e30_137e8.240.1c7 | $15$ |
$ 2^{30} \cdot 137^{8}$ |
$x^{17} - 3 x^{16} - 4 x^{14} + 12 x^{13} + 24 x^{12} + 12 x^{11} - 28 x^{10} - 90 x^{9} - 74 x^{8} + 116 x^{6} + 132 x^{5} + 72 x^{4} + 28 x^{3} + 12 x^{2} + 5 x + 1$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$-1$ |
|
| 15.2e30_137e8.240.1c8 | $15$ |
$ 2^{30} \cdot 137^{8}$ |
$x^{17} - 3 x^{16} - 4 x^{14} + 12 x^{13} + 24 x^{12} + 12 x^{11} - 28 x^{10} - 90 x^{9} - 74 x^{8} + 116 x^{6} + 132 x^{5} + 72 x^{4} + 28 x^{3} + 12 x^{2} + 5 x + 1$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$-1$ |
|
*
| 16.2e30_137e8.17t6.1c1 | $16$ |
$ 2^{30} \cdot 137^{8}$ |
$x^{17} - 3 x^{16} - 4 x^{14} + 12 x^{13} + 24 x^{12} + 12 x^{11} - 28 x^{10} - 90 x^{9} - 74 x^{8} + 116 x^{6} + 132 x^{5} + 72 x^{4} + 28 x^{3} + 12 x^{2} + 5 x + 1$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$0$ |
|
| 17.2e30_137e8.51.1c1 | $17$ |
$ 2^{30} \cdot 137^{8}$ |
$x^{17} - 3 x^{16} - 4 x^{14} + 12 x^{13} + 24 x^{12} + 12 x^{11} - 28 x^{10} - 90 x^{9} - 74 x^{8} + 116 x^{6} + 132 x^{5} + 72 x^{4} + 28 x^{3} + 12 x^{2} + 5 x + 1$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$1$ |
|
| 17.2e30_137e8.68.1c1 | $17$ |
$ 2^{30} \cdot 137^{8}$ |
$x^{17} - 3 x^{16} - 4 x^{14} + 12 x^{13} + 24 x^{12} + 12 x^{11} - 28 x^{10} - 90 x^{9} - 74 x^{8} + 116 x^{6} + 132 x^{5} + 72 x^{4} + 28 x^{3} + 12 x^{2} + 5 x + 1$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$1$ |
|
| 17.2e30_137e8.68.1c2 | $17$ |
$ 2^{30} \cdot 137^{8}$ |
$x^{17} - 3 x^{16} - 4 x^{14} + 12 x^{13} + 24 x^{12} + 12 x^{11} - 28 x^{10} - 90 x^{9} - 74 x^{8} + 116 x^{6} + 132 x^{5} + 72 x^{4} + 28 x^{3} + 12 x^{2} + 5 x + 1$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$1$ |
|
| 17.2e30_137e8.120.1c1 | $17$ |
$ 2^{30} \cdot 137^{8}$ |
$x^{17} - 3 x^{16} - 4 x^{14} + 12 x^{13} + 24 x^{12} + 12 x^{11} - 28 x^{10} - 90 x^{9} - 74 x^{8} + 116 x^{6} + 132 x^{5} + 72 x^{4} + 28 x^{3} + 12 x^{2} + 5 x + 1$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$1$ |
|
| 17.2e30_137e8.120.1c2 | $17$ |
$ 2^{30} \cdot 137^{8}$ |
$x^{17} - 3 x^{16} - 4 x^{14} + 12 x^{13} + 24 x^{12} + 12 x^{11} - 28 x^{10} - 90 x^{9} - 74 x^{8} + 116 x^{6} + 132 x^{5} + 72 x^{4} + 28 x^{3} + 12 x^{2} + 5 x + 1$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$1$ |
|
| 17.2e30_137e8.120.1c3 | $17$ |
$ 2^{30} \cdot 137^{8}$ |
$x^{17} - 3 x^{16} - 4 x^{14} + 12 x^{13} + 24 x^{12} + 12 x^{11} - 28 x^{10} - 90 x^{9} - 74 x^{8} + 116 x^{6} + 132 x^{5} + 72 x^{4} + 28 x^{3} + 12 x^{2} + 5 x + 1$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$1$ |
|
| 17.2e30_137e8.120.1c4 | $17$ |
$ 2^{30} \cdot 137^{8}$ |
$x^{17} - 3 x^{16} - 4 x^{14} + 12 x^{13} + 24 x^{12} + 12 x^{11} - 28 x^{10} - 90 x^{9} - 74 x^{8} + 116 x^{6} + 132 x^{5} + 72 x^{4} + 28 x^{3} + 12 x^{2} + 5 x + 1$ |
$\PSL(2,16)$ (as 17T6) |
$1$ |
$1$ |
Data is given for all irreducible
representations of the Galois group for the Galois closure
of this field. Those marked with * are summands in the
permutation representation coming from this field. Representations
which appear with multiplicity greater than one are indicated
by exponents on the *.