Normalized defining polynomial
\( x^{17} - 3 x^{16} - 2 x^{15} + 24 x^{14} - 20 x^{13} - 80 x^{12} + 115 x^{11} + 27 x^{10} + 132 x^{9} - 302 x^{8} - 219 x^{7} - 172 x^{6} + 41 x^{5} - 25 x^{4} + 44 x^{3} + 39 x^{2} - 2 x - 23 \)
Invariants
| Degree: | $17$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10582983069512347410470401=17^{8}\cdot 79^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{2}{5} a^{10} - \frac{2}{5} a^{9} - \frac{1}{5} a^{8} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{85} a^{13} - \frac{1}{17} a^{12} + \frac{33}{85} a^{11} - \frac{2}{85} a^{10} - \frac{6}{85} a^{9} - \frac{2}{17} a^{8} - \frac{3}{17} a^{7} + \frac{21}{85} a^{6} - \frac{6}{85} a^{5} - \frac{28}{85} a^{4} + \frac{27}{85} a^{3} - \frac{6}{85} a^{2} + \frac{26}{85} a - \frac{6}{17}$, $\frac{1}{85} a^{14} + \frac{8}{85} a^{12} - \frac{7}{85} a^{11} - \frac{16}{85} a^{10} - \frac{8}{17} a^{9} + \frac{4}{17} a^{8} + \frac{31}{85} a^{7} + \frac{14}{85} a^{6} + \frac{27}{85} a^{5} - \frac{28}{85} a^{4} - \frac{41}{85} a^{3} - \frac{4}{85} a^{2} + \frac{3}{17} a + \frac{4}{17}$, $\frac{1}{85} a^{15} - \frac{1}{85} a^{12} - \frac{5}{17} a^{11} - \frac{41}{85} a^{10} - \frac{2}{5} a^{9} - \frac{5}{17} a^{8} - \frac{36}{85} a^{7} + \frac{29}{85} a^{6} - \frac{14}{85} a^{5} - \frac{38}{85} a^{4} - \frac{33}{85} a^{3} - \frac{1}{17} a^{2} + \frac{16}{85} a + \frac{36}{85}$, $\frac{1}{5986908182190965} a^{16} + \frac{19008147736664}{5986908182190965} a^{15} + \frac{1447083794532}{5986908182190965} a^{14} + \frac{719896244228}{1197381636438193} a^{13} - \frac{119627042156754}{1197381636438193} a^{12} - \frac{1809467236520317}{5986908182190965} a^{11} - \frac{766118369873373}{5986908182190965} a^{10} + \frac{2400907771710747}{5986908182190965} a^{9} - \frac{1354382065349224}{5986908182190965} a^{8} - \frac{131590314109049}{352171069540645} a^{7} - \frac{283626651046264}{5986908182190965} a^{6} - \frac{255764972524883}{5986908182190965} a^{5} + \frac{1156853177485618}{5986908182190965} a^{4} + \frac{1006256765537949}{5986908182190965} a^{3} - \frac{2918673005694162}{5986908182190965} a^{2} - \frac{2835855545095372}{5986908182190965} a + \frac{12100959331581}{352171069540645}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 663161.006215 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 34 |
| The 10 conjugacy class representatives for $D_{17}$ |
| Character table for $D_{17}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $17$ | $17$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | $17$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | $17$ | R | $17$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $17$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | $17$ | $17$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $79$ | $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 79.2.1.1 | $x^{2} - 79$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.1 | $x^{2} - 79$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.1 | $x^{2} - 79$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.1 | $x^{2} - 79$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.1 | $x^{2} - 79$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.1 | $x^{2} - 79$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.1 | $x^{2} - 79$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.1 | $x^{2} - 79$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |