Normalized defining polynomial
\( x^{17} - 7 x^{16} + 30 x^{15} - 61 x^{14} + 115 x^{13} - 158 x^{12} + 94 x^{11} - 111 x^{10} + 268 x^{9} - 411 x^{8} + 465 x^{7} - 473 x^{6} + 314 x^{5} - 109 x^{4} + 446 x^{3} - 498 x^{2} + 175 x + 1 \)
Invariants
| Degree: | $17$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(102143502423134353014546241=1783^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $1783$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{4}$, $\frac{1}{9} a^{13} - \frac{1}{9} a^{11} + \frac{1}{9} a^{10} + \frac{1}{9} a^{9} + \frac{1}{9} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{4}{9} a^{5} - \frac{2}{9} a^{3} - \frac{4}{9} a^{2} + \frac{2}{9} a - \frac{1}{9}$, $\frac{1}{585} a^{14} + \frac{1}{117} a^{13} - \frac{7}{585} a^{12} - \frac{16}{585} a^{11} - \frac{11}{195} a^{10} + \frac{1}{39} a^{9} + \frac{86}{585} a^{8} - \frac{14}{65} a^{7} + \frac{209}{585} a^{6} + \frac{43}{585} a^{5} - \frac{131}{585} a^{4} - \frac{31}{117} a^{3} - \frac{89}{195} a^{2} - \frac{8}{65} a - \frac{74}{585}$, $\frac{1}{33345} a^{15} - \frac{11}{33345} a^{14} + \frac{1018}{33345} a^{13} + \frac{83}{1235} a^{12} - \frac{1724}{11115} a^{11} - \frac{4202}{33345} a^{10} - \frac{241}{3705} a^{9} + \frac{5258}{33345} a^{8} - \frac{296}{6669} a^{7} + \frac{599}{33345} a^{6} + \frac{137}{2565} a^{5} + \frac{58}{585} a^{4} - \frac{1733}{3705} a^{3} + \frac{1945}{6669} a^{2} + \frac{647}{3705} a - \frac{12011}{33345}$, $\frac{1}{11256194389635} a^{16} - \frac{355937}{3752064796545} a^{15} - \frac{54261082}{288620368965} a^{14} - \frac{594246340459}{11256194389635} a^{13} + \frac{36095198188}{750412959309} a^{12} + \frac{129922992988}{865861106895} a^{11} + \frac{308476329944}{11256194389635} a^{10} + \frac{972736546493}{11256194389635} a^{9} - \frac{158864838419}{1250688265515} a^{8} + \frac{149421815261}{750412959309} a^{7} - \frac{24117750937}{1250688265515} a^{6} + \frac{67069126507}{592431283665} a^{5} - \frac{1854497751497}{3752064796545} a^{4} + \frac{396662797030}{2251238877927} a^{3} - \frac{228569659978}{2251238877927} a^{2} - \frac{3077124090674}{11256194389635} a + \frac{10701895817}{45571637205}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4818947.77807 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 34 |
| The 10 conjugacy class representatives for $D_{17}$ |
| Character table for $D_{17}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $17$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | $17$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | $17$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | $17$ | $17$ | $17$ | $17$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | $17$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 1783 | Data not computed | ||||||