Properties

Label 16.8.98879827413...8125.1
Degree $16$
Signature $[8, 4]$
Discriminant $5^{8}\cdot 13^{4}\cdot 29^{6}\cdot 149$
Root discriminant $20.52$
Ramified primes $5, 13, 29, 149$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T1775

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -12, 41, -25, -152, 413, -419, -39, 676, -1029, 967, -657, 337, -133, 39, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 8*x^15 + 39*x^14 - 133*x^13 + 337*x^12 - 657*x^11 + 967*x^10 - 1029*x^9 + 676*x^8 - 39*x^7 - 419*x^6 + 413*x^5 - 152*x^4 - 25*x^3 + 41*x^2 - 12*x + 1)
 
gp: K = bnfinit(x^16 - 8*x^15 + 39*x^14 - 133*x^13 + 337*x^12 - 657*x^11 + 967*x^10 - 1029*x^9 + 676*x^8 - 39*x^7 - 419*x^6 + 413*x^5 - 152*x^4 - 25*x^3 + 41*x^2 - 12*x + 1, 1)
 

Normalized defining polynomial

\( x^{16} - 8 x^{15} + 39 x^{14} - 133 x^{13} + 337 x^{12} - 657 x^{11} + 967 x^{10} - 1029 x^{9} + 676 x^{8} - 39 x^{7} - 419 x^{6} + 413 x^{5} - 152 x^{4} - 25 x^{3} + 41 x^{2} - 12 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(988798274137136328125=5^{8}\cdot 13^{4}\cdot 29^{6}\cdot 149\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $20.52$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 13, 29, 149$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{149} a^{14} - \frac{7}{149} a^{13} + \frac{59}{149} a^{12} + \frac{35}{149} a^{11} + \frac{28}{149} a^{10} + \frac{18}{149} a^{9} - \frac{47}{149} a^{8} + \frac{6}{149} a^{7} + \frac{9}{149} a^{6} - \frac{17}{149} a^{5} - \frac{44}{149} a^{4} + \frac{59}{149} a^{3} + \frac{60}{149} a^{2} - \frac{11}{149} a + \frac{11}{149}$, $\frac{1}{149} a^{15} + \frac{10}{149} a^{13} + \frac{1}{149} a^{12} - \frac{25}{149} a^{11} + \frac{65}{149} a^{10} - \frac{70}{149} a^{9} - \frac{25}{149} a^{8} + \frac{51}{149} a^{7} + \frac{46}{149} a^{6} - \frac{14}{149} a^{5} + \frac{49}{149} a^{4} + \frac{26}{149} a^{3} - \frac{38}{149} a^{2} - \frac{66}{149} a - \frac{72}{149}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 37782.4224469 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1775:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 16384
The 136 conjugacy class representatives for t16n1775 are not computed
Character table for t16n1775 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.725.1, 8.8.2576088125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $16$ $16$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ R ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ R ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ $16$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$13$13.8.0.1$x^{8} + 4 x^{2} - x + 6$$1$$8$$0$$C_8$$[\ ]^{8}$
13.8.4.1$x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$29$29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
29.8.6.2$x^{8} + 145 x^{4} + 7569$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$149$149.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
149.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
149.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
149.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
149.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
149.2.1.2$x^{2} + 298$$2$$1$$1$$C_2$$[\ ]_{2}$
149.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
149.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$