Normalized defining polynomial
\( x^{16} - 4 x^{15} - 4 x^{14} + 48 x^{13} - 145 x^{12} + 280 x^{11} - 41 x^{10} - 1014 x^{9} + 844 x^{8} + 2946 x^{7} - 6833 x^{6} + 5144 x^{5} + 3215 x^{4} - 9798 x^{3} + 4391 x^{2} + 3322 x - 2351 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(983761265267629401636864=2^{16}\cdot 3^{14}\cdot 11^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{22} a^{12} + \frac{4}{11} a^{11} + \frac{5}{22} a^{10} + \frac{2}{11} a^{9} + \frac{9}{22} a^{8} - \frac{1}{11} a^{7} - \frac{7}{22} a^{6} + \frac{5}{11} a^{5} - \frac{5}{11} a^{4} - \frac{1}{11} a^{3} - \frac{3}{11} a^{2} - \frac{5}{11} a + \frac{9}{22}$, $\frac{1}{22} a^{13} + \frac{7}{22} a^{11} + \frac{4}{11} a^{10} - \frac{1}{22} a^{9} - \frac{4}{11} a^{8} + \frac{9}{22} a^{7} - \frac{1}{11} a^{5} - \frac{5}{11} a^{4} + \frac{5}{11} a^{3} - \frac{3}{11} a^{2} + \frac{1}{22} a - \frac{3}{11}$, $\frac{1}{3586} a^{14} - \frac{16}{1793} a^{13} - \frac{45}{3586} a^{12} + \frac{487}{1793} a^{11} - \frac{67}{326} a^{10} - \frac{708}{1793} a^{9} + \frac{1403}{3586} a^{8} - \frac{114}{1793} a^{7} + \frac{346}{1793} a^{6} - \frac{827}{1793} a^{5} + \frac{755}{1793} a^{4} - \frac{804}{1793} a^{3} - \frac{1343}{3586} a^{2} + \frac{10}{1793} a - \frac{677}{1793}$, $\frac{1}{783837283308818904286} a^{15} + \frac{46446949471538857}{391918641654409452143} a^{14} - \frac{245610478911487279}{71257934846256264026} a^{13} - \frac{17351216047808457073}{783837283308818904286} a^{12} + \frac{32384129747353390039}{71257934846256264026} a^{11} - \frac{326542074485075268475}{783837283308818904286} a^{10} - \frac{318028955464271804105}{783837283308818904286} a^{9} - \frac{279093725616589354235}{783837283308818904286} a^{8} - \frac{137777963527838927155}{391918641654409452143} a^{7} + \frac{244475680486718177645}{783837283308818904286} a^{6} + \frac{17512420894975223860}{35628967423128132013} a^{5} + \frac{8849941114669015005}{35628967423128132013} a^{4} - \frac{67984584179111462381}{783837283308818904286} a^{3} + \frac{101680209355973655039}{391918641654409452143} a^{2} - \frac{93009279087426189546}{391918641654409452143} a - \frac{104405009323598180815}{783837283308818904286}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 751195.186818 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$SD_{16}:C_2$ (as 16T50):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $SD_{16}:C_2$ |
| Character table for $SD_{16}:C_2$ |
Intermediate fields
| \(\Q(\sqrt{3}) \), \(\Q(\sqrt{33}) \), \(\Q(\sqrt{11}) \), 4.4.4752.1 x2, 4.4.13068.1 x2, \(\Q(\sqrt{3}, \sqrt{11})\), 8.8.2732361984.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 3 | Data not computed | ||||||
| $11$ | 11.8.6.1 | $x^{8} + 143 x^{4} + 5929$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 11.8.6.1 | $x^{8} + 143 x^{4} + 5929$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |