Normalized defining polynomial
\( x^{16} - 4 x^{15} + 14 x^{13} - 2 x^{12} - 18 x^{11} - 26 x^{10} + 18 x^{9} + 81 x^{8} - 14 x^{7} + \cdots + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[8, 4]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(9834496000000000000\)
\(\medspace = 2^{24}\cdot 5^{12}\cdot 7^{4}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(15.38\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{19/12}5^{3/4}7^{1/2}\approx 26.50985484327206$ | ||
Ramified primes: |
\(2\), \(5\), \(7\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_4$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{379}a^{15}+\frac{129}{379}a^{14}+\frac{102}{379}a^{13}-\frac{64}{379}a^{12}-\frac{176}{379}a^{11}+\frac{72}{379}a^{10}+\frac{75}{379}a^{9}+\frac{139}{379}a^{8}-\frac{3}{379}a^{7}-\frac{34}{379}a^{6}-\frac{72}{379}a^{5}-\frac{103}{379}a^{4}+\frac{5}{379}a^{3}-\frac{87}{379}a^{2}+\frac{162}{379}a-\frac{57}{379}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $11$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{1416}{379}a^{15}-\frac{3804}{379}a^{14}-\frac{4894}{379}a^{13}+\frac{13222}{379}a^{12}+\frac{13810}{379}a^{11}-\frac{6442}{379}a^{10}-\frac{43126}{379}a^{9}-\frac{31713}{379}a^{8}+\frac{69278}{379}a^{7}+\frac{66314}{379}a^{6}-\frac{46618}{379}a^{5}-\frac{53372}{379}a^{4}+\frac{10870}{379}a^{3}+\frac{14764}{379}a^{2}-\frac{2556}{379}a-\frac{743}{379}$, $\frac{2113}{379}a^{15}-\frac{5988}{379}a^{14}-\frac{6568}{379}a^{13}+\frac{20916}{379}a^{12}+\frac{18482}{379}a^{11}-\frac{13108}{379}a^{10}-\frac{65135}{379}a^{9}-\frac{38676}{379}a^{8}+\frac{113046}{379}a^{7}+\frac{89991}{379}a^{6}-\frac{85053}{379}a^{5}-\frac{78925}{379}a^{4}+\frac{26483}{379}a^{3}+\frac{24619}{379}a^{2}-\frac{5237}{379}a-\frac{1435}{379}$, $\frac{359}{379}a^{15}-\frac{685}{379}a^{14}-\frac{1661}{379}a^{13}+\frac{1659}{379}a^{12}+\frac{4657}{379}a^{11}+\frac{3487}{379}a^{10}-\frac{8322}{379}a^{9}-\frac{16045}{379}a^{8}+\frac{2713}{379}a^{7}+\frac{19630}{379}a^{6}+\frac{11294}{379}a^{5}-\frac{6278}{379}a^{4}-\frac{11470}{379}a^{3}-\frac{3566}{379}a^{2}+\frac{1687}{379}a+\frac{761}{379}$, $\frac{3877}{379}a^{15}-\frac{11138}{379}a^{14}-\frac{11592}{379}a^{13}+\frac{38396}{379}a^{12}+\frac{33200}{379}a^{11}-\frac{24056}{379}a^{10}-\frac{120440}{379}a^{9}-\frac{69013}{379}a^{8}+\frac{208189}{379}a^{7}+\frac{163423}{379}a^{6}-\frac{154074}{379}a^{5}-\frac{145780}{379}a^{4}+\frac{44778}{379}a^{3}+\frac{46249}{379}a^{2}-\frac{7130}{379}a-\frac{3064}{379}$, $\frac{258}{379}a^{15}-\frac{1586}{379}a^{14}+\frac{1302}{379}a^{13}+\frac{5849}{379}a^{12}-\frac{4476}{379}a^{11}-\frac{11365}{379}a^{10}-\frac{7938}{379}a^{9}+\frac{21081}{379}a^{8}+\frac{40158}{379}a^{7}-\frac{20521}{379}a^{6}-\frac{57234}{379}a^{5}-\frac{1181}{379}a^{4}+\frac{35400}{379}a^{3}+\frac{9769}{379}a^{2}-\frac{5579}{379}a-\frac{1062}{379}$, $\frac{1558}{379}a^{15}-\frac{3678}{379}a^{14}-\frac{6707}{379}a^{13}+\frac{12472}{379}a^{12}+\frac{20275}{379}a^{11}-\frac{1145}{379}a^{10}-\frac{50289}{379}a^{9}-\frac{52149}{379}a^{8}+\frac{62030}{379}a^{7}+\frac{100523}{379}a^{6}-\frac{20458}{379}a^{5}-\frac{75578}{379}a^{4}-\frac{13055}{379}a^{3}+\frac{17191}{379}a^{2}+\frac{3772}{379}a-\frac{499}{379}$, $\frac{450}{379}a^{15}-\frac{2590}{379}a^{14}+\frac{1936}{379}a^{13}+\frac{9100}{379}a^{12}-\frac{6432}{379}a^{11}-\frac{16491}{379}a^{10}-\frac{13246}{379}a^{9}+\frac{29956}{379}a^{8}+\frac{60048}{379}a^{7}-\frac{29702}{379}a^{6}-\frac{82428}{379}a^{5}+\frac{1025}{379}a^{4}+\frac{50004}{379}a^{3}+\frac{10878}{379}a^{2}-\frac{7827}{379}a-\frac{1394}{379}$, $\frac{2853}{379}a^{15}-\frac{7173}{379}a^{14}-\frac{11436}{379}a^{13}+\frac{25479}{379}a^{12}+\frac{33399}{379}a^{11}-\frac{9477}{379}a^{10}-\frac{91878}{379}a^{9}-\frac{80215}{379}a^{8}+\frac{133945}{379}a^{7}+\frac{165266}{379}a^{6}-\frac{75040}{379}a^{5}-\frac{133921}{379}a^{4}+\frac{3274}{379}a^{3}+\frac{38692}{379}a^{2}+\frac{943}{379}a-\frac{3062}{379}$, $\frac{1822}{379}a^{15}-\frac{4869}{379}a^{14}-\frac{6688}{379}a^{13}+\frac{17558}{379}a^{12}+\frac{19670}{379}a^{11}-\frac{10183}{379}a^{10}-\frac{60430}{379}a^{9}-\frac{42362}{379}a^{8}+\frac{98001}{379}a^{7}+\frac{99506}{379}a^{6}-\frac{67891}{379}a^{5}-\frac{91779}{379}a^{4}+\frac{14037}{379}a^{3}+\frac{33639}{379}a^{2}-\frac{77}{379}a-\frac{3419}{379}$, $a^{15}-3a^{14}-3a^{13}+11a^{12}+9a^{11}-9a^{10}-35a^{9}-17a^{8}+64a^{7}+50a^{6}-48a^{5}-50a^{4}+10a^{3}+16a^{2}$, $\frac{1629}{379}a^{15}-\frac{4752}{379}a^{14}-\frac{5150}{379}a^{13}+\frac{17782}{379}a^{12}+\frac{14222}{379}a^{11}-\frac{14604}{379}a^{10}-\frac{53302}{379}a^{9}-\frac{25983}{379}a^{8}+\frac{101612}{379}a^{7}+\frac{72337}{379}a^{6}-\frac{86210}{379}a^{5}-\frac{72279}{379}a^{4}+\frac{30885}{379}a^{3}+\frac{28069}{379}a^{2}-\frac{4434}{379}a-\frac{1893}{379}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 2954.91741119 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{4}\cdot 2954.91741119 \cdot 1}{2\cdot\sqrt{9834496000000000000}}\cr\approx \mathstrut & 0.187974412476 \end{aligned}\]
Galois group
$C_4\times S_4$ (as 16T181):
A solvable group of order 96 |
The 20 conjugacy class representatives for $C_4\times S_4$ |
Character table for $C_4\times S_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\), 4.2.14000.1, 8.4.196000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 16 sibling: | data not computed |
Degree 24 siblings: | data not computed |
Degree 32 sibling: | data not computed |
Minimal sibling: | 12.4.12293120000000.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.12.0.1}{12} }{,}\,{\href{/padicField/3.4.0.1}{4} }$ | R | R | ${\href{/padicField/11.6.0.1}{6} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ | ${\href{/padicField/13.12.0.1}{12} }{,}\,{\href{/padicField/13.4.0.1}{4} }$ | ${\href{/padicField/17.12.0.1}{12} }{,}\,{\href{/padicField/17.4.0.1}{4} }$ | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.6.0.1}{6} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.12.0.1}{12} }{,}\,{\href{/padicField/47.4.0.1}{4} }$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| Deg $16$ | $8$ | $2$ | $24$ | |||
\(5\)
| 5.16.12.1 | $x^{16} + 16 x^{14} + 16 x^{13} + 124 x^{12} + 192 x^{11} + 368 x^{10} - 16 x^{9} + 1462 x^{8} + 2688 x^{7} + 2544 x^{6} + 5232 x^{5} + 14108 x^{4} + 4800 x^{3} + 8592 x^{2} - 6512 x + 13041$ | $4$ | $4$ | $12$ | $C_4^2$ | $[\ ]_{4}^{4}$ |
\(7\)
| 7.4.0.1 | $x^{4} + 5 x^{2} + 4 x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
7.4.0.1 | $x^{4} + 5 x^{2} + 4 x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
7.8.4.1 | $x^{8} + 38 x^{6} + 8 x^{5} + 395 x^{4} - 72 x^{3} + 1026 x^{2} - 872 x + 401$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |