Normalized defining polynomial
\( x^{16} - 4 x^{15} + 8 x^{14} + 48 x^{13} - 551 x^{12} + 1068 x^{11} + 1380 x^{10} - 14445 x^{9} + 18636 x^{8} + 80410 x^{7} - 15842 x^{6} - 336095 x^{5} - 145654 x^{4} + 452112 x^{3} + 86423 x^{2} + 27755 x - 19825 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(98340377973019428085802419249=13^{10}\cdot 61^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{39} a^{13} + \frac{4}{39} a^{12} - \frac{1}{3} a^{10} - \frac{4}{13} a^{9} + \frac{10}{39} a^{8} - \frac{10}{39} a^{7} - \frac{19}{39} a^{6} - \frac{1}{13} a^{5} + \frac{11}{39} a^{4} - \frac{17}{39} a^{3} - \frac{8}{39} a^{2} + \frac{1}{3}$, $\frac{1}{3705} a^{14} + \frac{7}{3705} a^{13} + \frac{122}{741} a^{12} + \frac{101}{285} a^{11} + \frac{9}{1235} a^{10} + \frac{8}{19} a^{9} - \frac{42}{247} a^{8} + \frac{115}{741} a^{7} - \frac{1789}{3705} a^{6} + \frac{1796}{3705} a^{5} - \frac{1271}{3705} a^{4} + \frac{483}{1235} a^{3} - \frac{140}{741} a^{2} + \frac{43}{95} a + \frac{8}{57}$, $\frac{1}{178106483249920003858088742281950467678105} a^{15} - \frac{15949066503404551050524404811505686093}{178106483249920003858088742281950467678105} a^{14} - \frac{28250446800052240372282080153844216436}{35621296649984000771617748456390093535621} a^{13} - \frac{20901303782931418669714038968169575904557}{178106483249920003858088742281950467678105} a^{12} + \frac{28781720798516161686012444896107524047269}{59368827749973334619362914093983489226035} a^{11} + \frac{13732465555816829588163258829965372599590}{35621296649984000771617748456390093535621} a^{10} + \frac{670100447984400324068132409693344951938}{1874805086841263198506197287178425975559} a^{9} + \frac{5944942502234807598092060856400938188036}{35621296649984000771617748456390093535621} a^{8} + \frac{4850695764105263017986368718685208997892}{13700498711532307989083749406303882129085} a^{7} + \frac{10177483652956821821866780932378817447812}{59368827749973334619362914093983489226035} a^{6} - \frac{57734319701944743406432113895681851209876}{178106483249920003858088742281950467678105} a^{5} + \frac{78970471409390378643508582796407947380129}{178106483249920003858088742281950467678105} a^{4} + \frac{8916201228053928129217277186167477672798}{35621296649984000771617748456390093535621} a^{3} + \frac{1145214513677501000543560785119242286286}{3124675144735438664176995478630709959265} a^{2} - \frac{69813679661967383787087947975844450236}{913366580768820532605583293753592141939} a - \frac{934760451180295942825617544282644586229}{2740099742306461597816749881260776425817}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 383985012.359 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times OD_{16}).C_2$ (as 16T123):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $(C_2\times OD_{16}).C_2$ |
| Character table for $(C_2\times OD_{16}).C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), \(\Q(\sqrt{61}) \), \(\Q(\sqrt{793}) \), 4.4.10309.1 x2, 4.4.48373.1 x2, \(\Q(\sqrt{13}, \sqrt{61})\), 8.8.395451064801.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61 | Data not computed | ||||||