Normalized defining polynomial
\( x^{16} - x^{15} - 16 x^{14} + 33 x^{13} - 16 x^{12} - 171 x^{11} + 698 x^{10} - 1208 x^{9} + 1089 x^{8} + 1529 x^{7} - 8176 x^{6} + 18614 x^{5} - 29307 x^{4} + 31602 x^{3} - 22983 x^{2} + 8312 x - 1087 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9786054790924809742924193=17^{15}\cdot 43^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{6767} a^{14} + \frac{2573}{6767} a^{13} + \frac{1933}{6767} a^{12} + \frac{2484}{6767} a^{11} + \frac{2130}{6767} a^{10} + \frac{3057}{6767} a^{9} + \frac{515}{6767} a^{8} - \frac{2610}{6767} a^{7} + \frac{1580}{6767} a^{6} - \frac{2845}{6767} a^{5} - \frac{2985}{6767} a^{4} - \frac{913}{6767} a^{3} + \frac{2761}{6767} a^{2} + \frac{2055}{6767} a - \frac{1135}{6767}$, $\frac{1}{1491148817736927361330597} a^{15} - \frac{45934711283690975826}{1491148817736927361330597} a^{14} - \frac{170723663225853974497145}{1491148817736927361330597} a^{13} + \frac{293207805458118522620981}{1491148817736927361330597} a^{12} - \frac{622008360555620105873019}{1491148817736927361330597} a^{11} - \frac{629313852632608949707675}{1491148817736927361330597} a^{10} + \frac{222522481845445367739686}{1491148817736927361330597} a^{9} - \frac{394673418766422007536799}{1491148817736927361330597} a^{8} + \frac{196372026311366921994798}{1491148817736927361330597} a^{7} + \frac{671209624024009892848630}{1491148817736927361330597} a^{6} + \frac{575529083703201205701483}{1491148817736927361330597} a^{5} - \frac{276577773330158820932465}{1491148817736927361330597} a^{4} + \frac{16669550600096525221522}{1491148817736927361330597} a^{3} + \frac{479116737288740367480768}{1491148817736927361330597} a^{2} + \frac{544145345512620619380797}{1491148817736927361330597} a - \frac{166786993642416100882123}{1491148817736927361330597}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2917719.3712 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | R | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| $43$ | 43.8.4.2 | $x^{8} - 79507 x^{2} + 68376020$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |
| 43.8.0.1 | $x^{8} - 3 x + 18$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |