Properties

Label 16.8.97015201670...0625.2
Degree $16$
Signature $[8, 4]$
Discriminant $5^{8}\cdot 19^{6}\cdot 29^{6}\cdot 31^{6}$
Root discriminant $86.43$
Ramified primes $5, 19, 29, 31$
Class number $8$ (GRH)
Class group $[2, 4]$ (GRH)
Galois group $C_2^3.(C_2\times D_4)$ (as 16T408)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![31833769, 58331713, -111838873, 49148717, 10258131, -13774126, 2126257, 555930, -39400, 1734, -19735, 1350, 894, 70, -39, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 - 39*x^14 + 70*x^13 + 894*x^12 + 1350*x^11 - 19735*x^10 + 1734*x^9 - 39400*x^8 + 555930*x^7 + 2126257*x^6 - 13774126*x^5 + 10258131*x^4 + 49148717*x^3 - 111838873*x^2 + 58331713*x + 31833769)
 
gp: K = bnfinit(x^16 - 4*x^15 - 39*x^14 + 70*x^13 + 894*x^12 + 1350*x^11 - 19735*x^10 + 1734*x^9 - 39400*x^8 + 555930*x^7 + 2126257*x^6 - 13774126*x^5 + 10258131*x^4 + 49148717*x^3 - 111838873*x^2 + 58331713*x + 31833769, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} - 39 x^{14} + 70 x^{13} + 894 x^{12} + 1350 x^{11} - 19735 x^{10} + 1734 x^{9} - 39400 x^{8} + 555930 x^{7} + 2126257 x^{6} - 13774126 x^{5} + 10258131 x^{4} + 49148717 x^{3} - 111838873 x^{2} + 58331713 x + 31833769 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(9701520167019972645874406640625=5^{8}\cdot 19^{6}\cdot 29^{6}\cdot 31^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $86.43$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 19, 29, 31$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3509} a^{14} + \frac{59}{3509} a^{13} + \frac{1214}{3509} a^{12} + \frac{1356}{3509} a^{11} + \frac{478}{3509} a^{10} - \frac{733}{3509} a^{9} - \frac{1520}{3509} a^{8} - \frac{306}{3509} a^{7} - \frac{1357}{3509} a^{6} - \frac{218}{3509} a^{5} - \frac{324}{3509} a^{4} - \frac{384}{3509} a^{3} - \frac{21}{3509} a^{2} - \frac{914}{3509} a + \frac{105}{319}$, $\frac{1}{16543914550183601717473629838409373608470551674749123991} a^{15} - \frac{2172405783639284408798228752784168962427227822558990}{16543914550183601717473629838409373608470551674749123991} a^{14} + \frac{3345271602691769027242831483263333275893974819248716920}{16543914550183601717473629838409373608470551674749123991} a^{13} + \frac{1112728614060161555340031474673458398956063096188423138}{16543914550183601717473629838409373608470551674749123991} a^{12} + \frac{4540280404817169994553137169439199477731505043279810998}{16543914550183601717473629838409373608470551674749123991} a^{11} + \frac{177702556745346027362403977895885974135213649546666586}{16543914550183601717473629838409373608470551674749123991} a^{10} + \frac{4079694426601280135025547179269085910716092487638711153}{16543914550183601717473629838409373608470551674749123991} a^{9} + \frac{1222436242432666941015775368233817548232442886557037359}{16543914550183601717473629838409373608470551674749123991} a^{8} - \frac{157252650824743635504452876547190159523018598173233818}{16543914550183601717473629838409373608470551674749123991} a^{7} + \frac{4130975605594980861168949917003375375393306797106776859}{16543914550183601717473629838409373608470551674749123991} a^{6} - \frac{1589430041583289904016799030017965406246926004743364627}{16543914550183601717473629838409373608470551674749123991} a^{5} - \frac{2938503205961167000442123127058723574734566781765521704}{16543914550183601717473629838409373608470551674749123991} a^{4} + \frac{141892460191564134785179150123176389396298321706010783}{570479812075296610947366546152047365809329368094797379} a^{3} - \frac{6774299502069455434140379653943261469846479038461844224}{16543914550183601717473629838409373608470551674749123991} a^{2} + \frac{7383061640913975729414939690654821537548889757494371626}{16543914550183601717473629838409373608470551674749123991} a - \frac{482015487525963376189332808619563463983264729362491422}{1503992231834872883406693621673579418951868334068102181}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 347400453.86 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^3.(C_2\times D_4)$ (as 16T408):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 128
The 26 conjugacy class representatives for $C_2^3.(C_2\times D_4)$
Character table for $C_2^3.(C_2\times D_4)$ is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.14725.1, 4.4.427025.1, 4.4.725.1, 8.4.107404356518125.2, 8.4.107404356518125.1, 8.8.182350350625.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ R R ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$19$19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.8.6.2$x^{8} - 19 x^{4} + 5776$$4$$2$$6$$D_4$$[\ ]_{4}^{2}$
$29$29.2.1.2$x^{2} + 58$$2$$1$$1$$C_2$$[\ ]_{2}$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.1.2$x^{2} + 58$$2$$1$$1$$C_2$$[\ ]_{2}$
29.4.2.1$x^{4} + 145 x^{2} + 7569$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
29.4.2.1$x^{4} + 145 x^{2} + 7569$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$31$$\Q_{31}$$x + 7$$1$$1$$0$Trivial$[\ ]$
$\Q_{31}$$x + 7$$1$$1$$0$Trivial$[\ ]$
$\Q_{31}$$x + 7$$1$$1$$0$Trivial$[\ ]$
$\Q_{31}$$x + 7$$1$$1$$0$Trivial$[\ ]$
31.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
31.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
31.8.6.1$x^{8} - 7471 x^{4} + 19927296$$4$$2$$6$$D_4$$[\ ]_{4}^{2}$