Normalized defining polynomial
\( x^{16} - 4 x^{15} - 39 x^{14} + 70 x^{13} + 894 x^{12} + 1350 x^{11} - 19735 x^{10} + 1734 x^{9} - 39400 x^{8} + 555930 x^{7} + 2126257 x^{6} - 13774126 x^{5} + 10258131 x^{4} + 49148717 x^{3} - 111838873 x^{2} + 58331713 x + 31833769 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9701520167019972645874406640625=5^{8}\cdot 19^{6}\cdot 29^{6}\cdot 31^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 19, 29, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3509} a^{14} + \frac{59}{3509} a^{13} + \frac{1214}{3509} a^{12} + \frac{1356}{3509} a^{11} + \frac{478}{3509} a^{10} - \frac{733}{3509} a^{9} - \frac{1520}{3509} a^{8} - \frac{306}{3509} a^{7} - \frac{1357}{3509} a^{6} - \frac{218}{3509} a^{5} - \frac{324}{3509} a^{4} - \frac{384}{3509} a^{3} - \frac{21}{3509} a^{2} - \frac{914}{3509} a + \frac{105}{319}$, $\frac{1}{16543914550183601717473629838409373608470551674749123991} a^{15} - \frac{2172405783639284408798228752784168962427227822558990}{16543914550183601717473629838409373608470551674749123991} a^{14} + \frac{3345271602691769027242831483263333275893974819248716920}{16543914550183601717473629838409373608470551674749123991} a^{13} + \frac{1112728614060161555340031474673458398956063096188423138}{16543914550183601717473629838409373608470551674749123991} a^{12} + \frac{4540280404817169994553137169439199477731505043279810998}{16543914550183601717473629838409373608470551674749123991} a^{11} + \frac{177702556745346027362403977895885974135213649546666586}{16543914550183601717473629838409373608470551674749123991} a^{10} + \frac{4079694426601280135025547179269085910716092487638711153}{16543914550183601717473629838409373608470551674749123991} a^{9} + \frac{1222436242432666941015775368233817548232442886557037359}{16543914550183601717473629838409373608470551674749123991} a^{8} - \frac{157252650824743635504452876547190159523018598173233818}{16543914550183601717473629838409373608470551674749123991} a^{7} + \frac{4130975605594980861168949917003375375393306797106776859}{16543914550183601717473629838409373608470551674749123991} a^{6} - \frac{1589430041583289904016799030017965406246926004743364627}{16543914550183601717473629838409373608470551674749123991} a^{5} - \frac{2938503205961167000442123127058723574734566781765521704}{16543914550183601717473629838409373608470551674749123991} a^{4} + \frac{141892460191564134785179150123176389396298321706010783}{570479812075296610947366546152047365809329368094797379} a^{3} - \frac{6774299502069455434140379653943261469846479038461844224}{16543914550183601717473629838409373608470551674749123991} a^{2} + \frac{7383061640913975729414939690654821537548889757494371626}{16543914550183601717473629838409373608470551674749123991} a - \frac{482015487525963376189332808619563463983264729362491422}{1503992231834872883406693621673579418951868334068102181}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 347400453.86 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.(C_2\times D_4)$ (as 16T408):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $C_2^3.(C_2\times D_4)$ |
| Character table for $C_2^3.(C_2\times D_4)$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.14725.1, 4.4.427025.1, 4.4.725.1, 8.4.107404356518125.2, 8.4.107404356518125.1, 8.8.182350350625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.8.6.2 | $x^{8} - 19 x^{4} + 5776$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| $29$ | 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $31$ | $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.8.6.1 | $x^{8} - 7471 x^{4} + 19927296$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |