Normalized defining polynomial
\( x^{16} - 4 x^{15} - 39 x^{14} + 238 x^{13} + 258 x^{12} - 6306 x^{11} + 3608 x^{10} + 61155 x^{9} - 189820 x^{8} - 331809 x^{7} + 3248683 x^{6} + 6153536 x^{5} - 11552838 x^{4} - 47680261 x^{3} - 50712166 x^{2} + 2912506 x + 25701709 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9701520167019972645874406640625=5^{8}\cdot 19^{6}\cdot 29^{6}\cdot 31^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 19, 29, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3509} a^{14} - \frac{17}{319} a^{13} + \frac{1602}{3509} a^{12} - \frac{845}{3509} a^{11} + \frac{7}{121} a^{10} + \frac{648}{3509} a^{9} + \frac{1546}{3509} a^{8} + \frac{1117}{3509} a^{7} - \frac{1717}{3509} a^{6} - \frac{74}{3509} a^{5} + \frac{1746}{3509} a^{4} - \frac{1212}{3509} a^{3} - \frac{762}{3509} a^{2} - \frac{700}{3509} a + \frac{133}{319}$, $\frac{1}{8528968467456676615188936611423783077728177300378616991} a^{15} - \frac{619756123539439415113388921715324971363752288959458}{8528968467456676615188936611423783077728177300378616991} a^{14} - \frac{940120492153407836800721411611001532092145730349192459}{8528968467456676615188936611423783077728177300378616991} a^{13} - \frac{3792652648915675598365641138191714500286407300734748217}{8528968467456676615188936611423783077728177300378616991} a^{12} - \frac{3583736349317036991080309340945403713210596682414340042}{8528968467456676615188936611423783077728177300378616991} a^{11} + \frac{3160244010859134207375586868274037077446634007160318350}{8528968467456676615188936611423783077728177300378616991} a^{10} + \frac{4109662148205871639535089582674069706336601411324173624}{8528968467456676615188936611423783077728177300378616991} a^{9} - \frac{77271909377209786565547607784975628196796469576322163}{775360769768788783198994237402162097975288845488965181} a^{8} - \frac{1199019414956425506328509390793373589368055227187397987}{8528968467456676615188936611423783077728177300378616991} a^{7} - \frac{2180145302956907349218103363508139208481560441652330226}{8528968467456676615188936611423783077728177300378616991} a^{6} - \frac{2856927773969241153503035924577689851893226806044955904}{8528968467456676615188936611423783077728177300378616991} a^{5} - \frac{46897266529772942108726679854551767544312146228131605}{95831106375917714777403782150829023345260419105377719} a^{4} - \frac{1720535492858433192306642647723109785439127817716936904}{8528968467456676615188936611423783077728177300378616991} a^{3} - \frac{3230804090129874567105389215347941260776303303485831070}{8528968467456676615188936611423783077728177300378616991} a^{2} + \frac{3379845683489649687424631394374223991631024619404182403}{8528968467456676615188936611423783077728177300378616991} a - \frac{63627402662965131445390186276108640059217695451652281}{775360769768788783198994237402162097975288845488965181}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 220644039.662 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.(C_2\times D_4)$ (as 16T408):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $C_2^3.(C_2\times D_4)$ |
| Character table for $C_2^3.(C_2\times D_4)$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.14725.1, 4.4.427025.2, 4.4.725.1, 8.4.107404356518125.2, 8.4.107404356518125.1, 8.8.182350350625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.4.3.2 | $x^{4} - 19$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 19.4.3.2 | $x^{4} - 19$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| $29$ | 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $31$ | 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.4.3.2 | $x^{4} - 31$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 31.4.3.2 | $x^{4} - 31$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |