Normalized defining polynomial
\( x^{16} - 15 x^{14} - 1968 x^{12} + 43315 x^{10} + 355421 x^{8} - 8765459 x^{6} - 5762275 x^{4} + 175653581 x^{2} + 331604347 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9558738202625098335096647974912=2^{18}\cdot 43^{3}\cdot 2777^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 43, 2777$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{24049677310775693221108427239798} a^{14} - \frac{2098704142749425314004259249721}{12024838655387846610554213619899} a^{12} + \frac{1042326712320906710730353266414}{12024838655387846610554213619899} a^{10} + \frac{8678921486892594605191696303945}{24049677310775693221108427239798} a^{8} + \frac{726250358836506990686474003765}{12024838655387846610554213619899} a^{6} - \frac{7903610012735256508304740613815}{24049677310775693221108427239798} a^{4} + \frac{1300069874850596036717197372}{4330154359160189632896727987} a^{2} + \frac{3849082049500405745388010525}{8660308718320379265793455974}$, $\frac{1}{48099354621551386442216854479596} a^{15} - \frac{1}{48099354621551386442216854479596} a^{14} + \frac{4963067256319210648274977185089}{12024838655387846610554213619899} a^{13} - \frac{4963067256319210648274977185089}{12024838655387846610554213619899} a^{12} + \frac{521163356160453355365176633207}{12024838655387846610554213619899} a^{11} - \frac{521163356160453355365176633207}{12024838655387846610554213619899} a^{10} - \frac{15370755823883098615916730935853}{48099354621551386442216854479596} a^{9} + \frac{15370755823883098615916730935853}{48099354621551386442216854479596} a^{8} + \frac{726250358836506990686474003765}{24049677310775693221108427239798} a^{7} - \frac{726250358836506990686474003765}{24049677310775693221108427239798} a^{6} + \frac{16146067298040436712803686625983}{48099354621551386442216854479596} a^{5} - \frac{16146067298040436712803686625983}{48099354621551386442216854479596} a^{4} - \frac{3030084484309593596179530615}{8660308718320379265793455974} a^{3} + \frac{3030084484309593596179530615}{8660308718320379265793455974} a^{2} - \frac{4811226668819973520405445449}{17320617436640758531586911948} a + \frac{4811226668819973520405445449}{17320617436640758531586911948}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2346380466.65 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 49152 |
| The 116 conjugacy class representatives for t16n1851 are not computed |
| Character table for t16n1851 is not computed |
Intermediate fields
| 4.4.2777.1, 8.8.1326417388.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.8 | $x^{4} + 2 x^{3} + 2$ | $4$ | $1$ | $6$ | $D_{4}$ | $[2, 2]^{2}$ |
| 2.12.12.5 | $x^{12} + 52 x^{10} - 11 x^{8} - 8 x^{6} - 45 x^{4} - 44 x^{2} - 9$ | $2$ | $6$ | $12$ | 12T51 | $[2, 2, 2, 2]^{6}$ | |
| 43 | Data not computed | ||||||
| 2777 | Data not computed | ||||||