Properties

Label 16.8.95279194557...5625.3
Degree $16$
Signature $[8, 4]$
Discriminant $3^{8}\cdot 5^{12}\cdot 29^{6}$
Root discriminant $20.47$
Ramified primes $3, 5, 29$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $(C_2\times C_4).D_4$ (as 16T121)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 1, -15, 26, 229, -292, -964, 477, 1196, -206, -546, 14, 114, 12, -15, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 - 15*x^14 + 12*x^13 + 114*x^12 + 14*x^11 - 546*x^10 - 206*x^9 + 1196*x^8 + 477*x^7 - 964*x^6 - 292*x^5 + 229*x^4 + 26*x^3 - 15*x^2 + x + 1)
 
gp: K = bnfinit(x^16 - 2*x^15 - 15*x^14 + 12*x^13 + 114*x^12 + 14*x^11 - 546*x^10 - 206*x^9 + 1196*x^8 + 477*x^7 - 964*x^6 - 292*x^5 + 229*x^4 + 26*x^3 - 15*x^2 + x + 1, 1)
 

Normalized defining polynomial

\( x^{16} - 2 x^{15} - 15 x^{14} + 12 x^{13} + 114 x^{12} + 14 x^{11} - 546 x^{10} - 206 x^{9} + 1196 x^{8} + 477 x^{7} - 964 x^{6} - 292 x^{5} + 229 x^{4} + 26 x^{3} - 15 x^{2} + x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(952791945576416015625=3^{8}\cdot 5^{12}\cdot 29^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $20.47$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 29$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{209} a^{14} + \frac{2}{11} a^{13} + \frac{56}{209} a^{12} + \frac{67}{209} a^{11} + \frac{25}{209} a^{10} + \frac{71}{209} a^{9} - \frac{73}{209} a^{8} - \frac{42}{209} a^{7} - \frac{43}{209} a^{6} + \frac{50}{209} a^{5} + \frac{16}{209} a^{4} + \frac{3}{209} a^{3} - \frac{54}{209} a^{2} - \frac{2}{209} a - \frac{15}{209}$, $\frac{1}{24777155383094279} a^{15} + \frac{30164850093430}{24777155383094279} a^{14} - \frac{11857778225431782}{24777155383094279} a^{13} + \frac{5886515769756010}{24777155383094279} a^{12} + \frac{11710510558336145}{24777155383094279} a^{11} + \frac{10561381904313441}{24777155383094279} a^{10} - \frac{4826043729586445}{24777155383094279} a^{9} + \frac{7349064257935513}{24777155383094279} a^{8} - \frac{7650253121712304}{24777155383094279} a^{7} + \frac{8012748891324252}{24777155383094279} a^{6} + \frac{8604521788920168}{24777155383094279} a^{5} + \frac{11547439005578978}{24777155383094279} a^{4} - \frac{10452161431374763}{24777155383094279} a^{3} - \frac{9537347210642228}{24777155383094279} a^{2} - \frac{11356710660707466}{24777155383094279} a - \frac{7543464036848939}{24777155383094279}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 29115.1020507 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$(C_2\times C_4).D_4$ (as 16T121):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 64
The 28 conjugacy class representatives for $(C_2\times C_4).D_4$
Character table for $(C_2\times C_4).D_4$ is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.725.1, \(\Q(\zeta_{15})^+\), 4.4.32625.1, 8.4.15243125.1, 8.4.30867328125.1, 8.8.1064390625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ R R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
5Data not computed
$29$29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
29.4.3.4$x^{4} + 232$$4$$1$$3$$C_4$$[\ ]_{4}$
29.4.3.4$x^{4} + 232$$4$$1$$3$$C_4$$[\ ]_{4}$
29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$