Normalized defining polynomial
\( x^{16} - 8 x^{15} + 30 x^{14} - 70 x^{13} - 450 x^{12} + 3246 x^{11} - 14558 x^{10} + 42320 x^{9} - 83050 x^{8} + 115130 x^{7} - 47368 x^{6} - 119996 x^{5} + 288595 x^{4} - 309070 x^{3} - 99740 x^{2} + 224988 x - 55949 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9491566863962023381888433837890625=5^{14}\cdot 41^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $132.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{40} a^{8} - \frac{1}{10} a^{7} + \frac{1}{20} a^{6} + \frac{1}{5} a^{5} - \frac{9}{20} a^{3} - \frac{3}{40} a^{2} + \frac{7}{20} a - \frac{9}{40}$, $\frac{1}{40} a^{9} + \frac{3}{20} a^{7} - \frac{1}{10} a^{6} - \frac{1}{5} a^{5} + \frac{1}{20} a^{4} + \frac{1}{8} a^{3} - \frac{9}{20} a^{2} + \frac{7}{40} a + \frac{1}{10}$, $\frac{1}{40} a^{10} - \frac{3}{20} a^{5} + \frac{1}{8} a^{4} + \frac{1}{4} a^{3} + \frac{1}{8} a^{2} - \frac{1}{2} a - \frac{3}{20}$, $\frac{1}{40} a^{11} - \frac{3}{20} a^{6} + \frac{1}{8} a^{5} - \frac{1}{4} a^{4} + \frac{1}{8} a^{3} - \frac{1}{2} a^{2} + \frac{7}{20} a - \frac{1}{2}$, $\frac{1}{320} a^{12} + \frac{1}{160} a^{11} - \frac{1}{160} a^{10} + \frac{1}{320} a^{9} - \frac{1}{320} a^{8} - \frac{9}{80} a^{7} - \frac{33}{320} a^{6} - \frac{1}{80} a^{5} + \frac{77}{320} a^{4} - \frac{27}{320} a^{3} - \frac{111}{320} a^{2} + \frac{141}{320} a + \frac{1}{64}$, $\frac{1}{320} a^{13} + \frac{1}{160} a^{11} - \frac{3}{320} a^{10} - \frac{3}{320} a^{9} - \frac{1}{160} a^{8} + \frac{71}{320} a^{7} + \frac{39}{160} a^{6} - \frac{51}{320} a^{5} + \frac{19}{320} a^{4} + \frac{127}{320} a^{3} - \frac{93}{320} a^{2} + \frac{123}{320} a + \frac{7}{32}$, $\frac{1}{229920449600} a^{14} - \frac{7}{229920449600} a^{13} + \frac{117368737}{114960224800} a^{12} - \frac{1408424753}{229920449600} a^{11} - \frac{3128489}{2673493600} a^{10} + \frac{64181113}{5346987200} a^{9} - \frac{1367399723}{229920449600} a^{8} - \frac{49573845219}{229920449600} a^{7} + \frac{35358678443}{229920449600} a^{6} - \frac{5142107667}{28740056200} a^{5} - \frac{22843513343}{114960224800} a^{4} - \frac{45635463859}{114960224800} a^{3} - \frac{28659949017}{114960224800} a^{2} - \frac{2481313189}{5346987200} a - \frac{35139042253}{114960224800}$, $\frac{1}{155656144379200} a^{15} + \frac{331}{155656144379200} a^{14} - \frac{3553629399}{3619910334400} a^{13} - \frac{143365591281}{155656144379200} a^{12} - \frac{273364877129}{77828072189600} a^{11} - \frac{13331763953}{1809955167200} a^{10} - \frac{176979058463}{77828072189600} a^{9} - \frac{1128229157083}{155656144379200} a^{8} + \frac{18372622022343}{77828072189600} a^{7} + \frac{6150067066877}{38914036094800} a^{6} + \frac{29481308269781}{155656144379200} a^{5} - \frac{27175364212801}{155656144379200} a^{4} + \frac{3553152418487}{155656144379200} a^{3} - \frac{21835304402377}{77828072189600} a^{2} - \frac{25628474930927}{155656144379200} a - \frac{896139308899}{77828072189600}$
Class group and class number
$C_{8}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17870951998.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_8$ (as 16T104):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $C_2^3.C_8$ |
| Character table for $C_2^3.C_8$ is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.1723025.1, 8.8.3043035529390625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | $16$ | R | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | $16$ | $16$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.7.4 | $x^{8} + 40$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.4 | $x^{8} + 40$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| 41 | Data not computed | ||||||