Normalized defining polynomial
\( x^{16} - 19890 x^{14} - 638585467 x^{12} + 1798329785850 x^{10} + 60897826532184704 x^{8} - 105732588674541402 x^{6} - 1577424202471246092688679 x^{4} - 1357399571910239703957606270 x^{2} + 8544240815100822030896306381537 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(94284067507195126346045323522879461199867166580604928=2^{16}\cdot 17^{15}\cdot 26626013^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2045.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 26626013$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{4} a$, $\frac{1}{106504052} a^{10} - \frac{9945}{53252026} a^{8} + \frac{438845}{106504052} a^{6} - \frac{17758183}{106504052} a^{4} + \frac{23812967}{53252026} a^{2} + \frac{1}{4}$, $\frac{1}{106504052} a^{11} - \frac{9945}{53252026} a^{9} + \frac{438845}{106504052} a^{7} - \frac{17758183}{106504052} a^{5} + \frac{23812967}{53252026} a^{3} + \frac{1}{4} a$, $\frac{1}{5671556546209352} a^{12} - \frac{9945}{2835778273104676} a^{10} + \frac{354471964845351}{2835778273104676} a^{8} - \frac{177011350845811}{708944568276169} a^{6} - \frac{35703169782915}{2835778273104676} a^{4} - \frac{15188015}{106504052} a^{2} + \frac{3}{8}$, $\frac{1}{5671556546209352} a^{13} - \frac{9945}{2835778273104676} a^{11} + \frac{354471964845351}{2835778273104676} a^{9} - \frac{177011350845811}{708944568276169} a^{7} - \frac{35703169782915}{2835778273104676} a^{5} - \frac{15188015}{106504052} a^{3} + \frac{3}{8} a$, $\frac{1}{1923101510642529814403860203575394194695985823171983378622232652366812974607318264496} a^{14} - \frac{133477362874473844919636746556416354119086803207043570241631444291713}{1923101510642529814403860203575394194695985823171983378622232652366812974607318264496} a^{12} + \frac{181021825275091568946644002837738813012560060154410230726660130213237032132}{120193844415158113400241262723462137168499113948248961163889540772925810912957391531} a^{10} + \frac{9076148832996555819143169560734874137097559656121759184204229677121769047581825947}{961550755321264907201930101787697097347992911585991689311116326183406487303659132248} a^{8} + \frac{9559519246435931157401854281616316433250652317539521652246122018257981049655448907}{73965442717020377477071546291361315180614839352768591485470486629492806715666087096} a^{6} - \frac{394898009077909856621688231158268882457860563261054902160103967459391624240}{4514151045263822014968642234324085140666727457402238974490455659768731086887} a^{4} + \frac{16476086123186608296102384797295501328334702904306631797209127962977}{208663543037985944391756101735158142154116610348267669931099943376368} a^{2} + \frac{38696735471936655292276461282781995276510945620711334056392851}{101878792724010811423130805297701005704591067935236105725040368}$, $\frac{1}{1923101510642529814403860203575394194695985823171983378622232652366812974607318264496} a^{15} - \frac{133477362874473844919636746556416354119086803207043570241631444291713}{1923101510642529814403860203575394194695985823171983378622232652366812974607318264496} a^{13} + \frac{181021825275091568946644002837738813012560060154410230726660130213237032132}{120193844415158113400241262723462137168499113948248961163889540772925810912957391531} a^{11} + \frac{9076148832996555819143169560734874137097559656121759184204229677121769047581825947}{961550755321264907201930101787697097347992911585991689311116326183406487303659132248} a^{9} + \frac{9559519246435931157401854281616316433250652317539521652246122018257981049655448907}{73965442717020377477071546291361315180614839352768591485470486629492806715666087096} a^{7} - \frac{394898009077909856621688231158268882457860563261054902160103967459391624240}{4514151045263822014968642234324085140666727457402238974490455659768731086887} a^{5} + \frac{16476086123186608296102384797295501328334702904306631797209127962977}{208663543037985944391756101735158142154116610348267669931099943376368} a^{3} + \frac{38696735471936655292276461282781995276510945620711334056392851}{101878792724010811423130805297701005704591067935236105725040368} a$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 67879824549300000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n841 |
| Character table for t16n841 is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.5 | $x^{8} + 2 x^{7} + 8 x^{2} + 16$ | $2$ | $4$ | $8$ | $C_8:C_2$ | $[2, 2]^{4}$ |
| 2.8.8.4 | $x^{8} + 2 x^{7} + 2 x^{6} + 8 x^{3} + 48$ | $2$ | $4$ | $8$ | $C_8$ | $[2]^{4}$ | |
| 17 | Data not computed | ||||||
| 26626013 | Data not computed | ||||||