/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^16 - 4*x^15 - 2*x^14 + 20*x^13 - 5*x^12 - 36*x^11 + 28*x^10 + 20*x^9 - 62*x^8 + 12*x^7 + 78*x^6 - 8*x^5 - 54*x^4 - 12*x^3 + 16*x^2 + 8*x + 1, 16, 181, [8, 4], 9349208943630483456, [2, 3], [1, a, a^2, a^3, a^4, a^5, a^6, a^7, a^8, a^9, a^10, a^11, a^12, a^13, a^14, 1/54809*a^15 - 16486/54809*a^14 - 20772/54809*a^13 + 27110/54809*a^12 - 24057/54809*a^11 + 19132/54809*a^10 - 17419/54809*a^9 + 10436/54809*a^8 - 15572/54809*a^7 - 12831/54809*a^6 - 27311/54809*a^5 - 6423/54809*a^4 - 27156/54809*a^3 + 14886/54809*a^2 - 25952/54809*a + 11436/54809], 0, 1, [], 0, [ (315967)/(54809)*a^(15) - (1300018)/(54809)*a^(14) - (491673)/(54809)*a^(13) + (6453458)/(54809)*a^(12) - (2498359)/(54809)*a^(11) - (11204238)/(54809)*a^(10) + (10833171)/(54809)*a^(9) + (4835746)/(54809)*a^(8) - (21026041)/(54809)*a^(7) + (7229132)/(54809)*a^(6) + (23924992)/(54809)*a^(5) - (6894323)/(54809)*a^(4) - (15835894)/(54809)*a^(3) - (552472)/(54809)*a^(2) + (5150952)/(54809)*a + (1266276)/(54809) , (419196)/(54809)*a^(15) - (1807143)/(54809)*a^(14) - (252718)/(54809)*a^(13) + (8362423)/(54809)*a^(12) - (4674982)/(54809)*a^(11) - (13352067)/(54809)*a^(10) + (15684084)/(54809)*a^(9) + (3328043)/(54809)*a^(8) - (26605386)/(54809)*a^(7) + (13076690)/(54809)*a^(6) + (28123408)/(54809)*a^(5) - (11897336)/(54809)*a^(4) - (18547145)/(54809)*a^(3) + (859523)/(54809)*a^(2) + (6202426)/(54809)*a + (1371687)/(54809) , (56424)/(54809)*a^(15) - (206952)/(54809)*a^(14) - (168099)/(54809)*a^(13) + (1031630)/(54809)*a^(12) + (7526)/(54809)*a^(11) - (1877602)/(54809)*a^(10) + (1081512)/(54809)*a^(9) + (1343193)/(54809)*a^(8) - (3170371)/(54809)*a^(7) - (278308)/(54809)*a^(6) + (4179464)/(54809)*a^(5) + (369419)/(54809)*a^(4) - (2695381)/(54809)*a^(3) - (623160)/(54809)*a^(2) + (728922)/(54809)*a + (272552)/(54809) , (93660)/(54809)*a^(15) - (438084)/(54809)*a^(14) + (104362)/(54809)*a^(13) + (1794754)/(54809)*a^(12) - (1570091)/(54809)*a^(11) - (2379113)/(54809)*a^(10) + (3927402)/(54809)*a^(9) - (521227)/(54809)*a^(8) - (5322503)/(54809)*a^(7) + (4210967)/(54809)*a^(6) + (4865771)/(54809)*a^(5) - (3392754)/(54809)*a^(4) - (3143428)/(54809)*a^(3) + (649126)/(54809)*a^(2) + (1046583)/(54809)*a + (127900)/(54809) , (258149)/(54809)*a^(15) - (1131362)/(54809)*a^(14) - (87322)/(54809)*a^(13) + (5174653)/(54809)*a^(12) - (3116434)/(54809)*a^(11) - (8153672)/(54809)*a^(10) + (9862976)/(54809)*a^(9) + (1715266)/(54809)*a^(8) - (16263205)/(54809)*a^(7) + (8567491)/(54809)*a^(6) + (17203593)/(54809)*a^(5) - (7517992)/(54809)*a^(4) - (11568607)/(54809)*a^(3) + (421069)/(54809)*a^(2) + (3986706)/(54809)*a + (891741)/(54809) , (225148)/(54809)*a^(15) - (946583)/(54809)*a^(14) - (251140)/(54809)*a^(13) + (4561951)/(54809)*a^(12) - (2187989)/(54809)*a^(11) - (7581034)/(54809)*a^(10) + (8281142)/(54809)*a^(9) + (2449103)/(54809)*a^(8) - (14835783)/(54809)*a^(7) + (6521055)/(54809)*a^(6) + (15844483)/(54809)*a^(5) - (6128747)/(54809)*a^(4) - (10150376)/(54809)*a^(3) + (256823)/(54809)*a^(2) + (3325516)/(54809)*a + (742652)/(54809) , (92691)/(54809)*a^(15) - (357760)/(54809)*a^(14) - (266136)/(54809)*a^(13) + (1997911)/(54809)*a^(12) - (401694)/(54809)*a^(11) - (3872422)/(54809)*a^(10) + (3103106)/(54809)*a^(9) + (2410831)/(54809)*a^(8) - (7004789)/(54809)*a^(7) + (1462113)/(54809)*a^(6) + (8365159)/(54809)*a^(5) - (2046868)/(54809)*a^(4) - (5549180)/(54809)*a^(3) - (127967)/(54809)*a^(2) + (1858875)/(54809)*a + (446688)/(54809) , (225393)/(54809)*a^(15) - (929787)/(54809)*a^(14) - (352661)/(54809)*a^(13) + (4681630)/(54809)*a^(12) - (1943346)/(54809)*a^(11) - (8100549)/(54809)*a^(10) + (8233780)/(54809)*a^(9) + (3197226)/(54809)*a^(8) - (15472001)/(54809)*a^(7) + (6063101)/(54809)*a^(6) + (16936166)/(54809)*a^(5) - (5893685)/(54809)*a^(4) - (10884224)/(54809)*a^(3) - (42355)/(54809)*a^(2) + (3599165)/(54809)*a + (804022)/(54809) , (253803)/(54809)*a^(15) - (1118569)/(54809)*a^(14) - (82633)/(54809)*a^(13) + (5193943)/(54809)*a^(12) - (3195093)/(54809)*a^(11) - (8320518)/(54809)*a^(10) + (10093957)/(54809)*a^(9) + (1906689)/(54809)*a^(8) - (16550453)/(54809)*a^(7) + (8864309)/(54809)*a^(6) + (17619377)/(54809)*a^(5) - (8159123)/(54809)*a^(4) - (12210116)/(54809)*a^(3) + (565560)/(54809)*a^(2) + (4360839)/(54809)*a + (1012266)/(54809) , (34150)/(54809)*a^(15) - (163279)/(54809)*a^(14) + (29087)/(54809)*a^(13) + (740198)/(54809)*a^(12) - (562539)/(54809)*a^(11) - (1226087)/(54809)*a^(10) + (1517879)/(54809)*a^(9) + (295327)/(54809)*a^(8) - (2383669)/(54809)*a^(7) + (1444339)/(54809)*a^(6) + (2809362)/(54809)*a^(5) - (1370057)/(54809)*a^(4) - (2256289)/(54809)*a^(3) + (58234)/(54809)*a^(2) + (877674)/(54809)*a + (244511)/(54809) , (410595)/(54809)*a^(15) - (1747131)/(54809)*a^(14) - (379704)/(54809)*a^(13) + (8346799)/(54809)*a^(12) - (4281037)/(54809)*a^(11) - (13698635)/(54809)*a^(10) + (15328243)/(54809)*a^(9) + (4057666)/(54809)*a^(8) - (26843046)/(54809)*a^(7) + (12338278)/(54809)*a^(6) + (28716844)/(54809)*a^(5) - (11297686)/(54809)*a^(4) - (18848392)/(54809)*a^(3) + (475198)/(54809)*a^(2) + (6397757)/(54809)*a + (1337997)/(54809) ], 2452.93509651, [[x^2 - 2, 1], [x^4 - 4*x^2 + 2, 1], [x^4 - 8*x + 6, 1], [x^8 - 4*x^7 + 10*x^6 - 16*x^5 + 19*x^4 - 16*x^3 + 2*x^2 + 4*x - 1, 1]]]