Normalized defining polynomial
\( x^{16} - 4 x^{15} + 4 x^{14} + 148 x^{13} - 662 x^{12} + 380 x^{11} + 4100 x^{10} - 14460 x^{9} - 9170 x^{8} + 50412 x^{7} - 44188 x^{6} - 32524 x^{5} + 513090 x^{4} + 737468 x^{3} + 225604 x^{2} - 57996 x + 81 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(93432784589729195622400000000=2^{44}\cdot 5^{8}\cdot 17^{2}\cdot 19^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{12} - \frac{1}{6} a^{11} - \frac{1}{6} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{2} a^{5} - \frac{1}{6} a^{4} - \frac{1}{6} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{4530} a^{14} + \frac{51}{755} a^{13} - \frac{659}{4530} a^{12} - \frac{101}{906} a^{11} - \frac{5}{151} a^{10} + \frac{59}{453} a^{9} - \frac{187}{906} a^{8} - \frac{164}{453} a^{7} - \frac{125}{906} a^{6} - \frac{824}{2265} a^{5} - \frac{1403}{4530} a^{4} + \frac{85}{302} a^{3} - \frac{201}{755} a^{2} + \frac{349}{2265} a - \frac{461}{1510}$, $\frac{1}{5741327382044318617711892226824023110} a^{15} + \frac{13502754975233630169166964178799}{521938852913119874337444747893093010} a^{14} - \frac{272811065660517023877505825961324081}{5741327382044318617711892226824023110} a^{13} - \frac{1184643858566762954974915707801117317}{5741327382044318617711892226824023110} a^{12} - \frac{58440568975796923169071971439971800}{574132738204431861771189222682402311} a^{11} - \frac{100790520476779520624277718697020955}{1148265476408863723542378445364804622} a^{10} + \frac{210184603424079581787090848322000955}{1148265476408863723542378445364804622} a^{9} - \frac{64399505162833090158871083725685163}{382755158802954574514126148454934874} a^{8} - \frac{366658266109772496640958336861885779}{1148265476408863723542378445364804622} a^{7} + \frac{208617038067866777660462967491075833}{637925264671590957523543580758224790} a^{6} + \frac{3825908207912117550543708079020463}{521938852913119874337444747893093010} a^{5} + \frac{211266255438823868392618983436755851}{5741327382044318617711892226824023110} a^{4} + \frac{2557305482740654545710693623245668}{9290173757353266371702090981915895} a^{3} - \frac{10210780231838364609101196017912213}{1148265476408863723542378445364804622} a^{2} + \frac{2367412018931188664728302361250690251}{5741327382044318617711892226824023110} a - \frac{70223071825456581488474723450428051}{637925264671590957523543580758224790}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 486447791.271 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 61 conjugacy class representatives for t16n1228 are not computed |
| Character table for t16n1228 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{10}) \), 4.4.7600.1, 4.4.30400.1, \(\Q(\sqrt{2}, \sqrt{5})\), 8.8.14786560000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.8.6.1 | $x^{8} + 57 x^{4} + 1444$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |