Normalized defining polynomial
\( x^{16} - x^{15} - 45 x^{14} + x^{13} - 708 x^{12} + 1115 x^{11} + 16242 x^{10} + 36896 x^{9} + 185901 x^{8} - 544814 x^{7} - 1337386 x^{6} - 7688656 x^{5} - 9683921 x^{4} + 17611964 x^{3} + 39000939 x^{2} + 15688356 x - 1027001 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9271430660151733401059603251196113=11^{4}\cdot 97^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $132.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{113} a^{14} - \frac{27}{113} a^{13} - \frac{25}{113} a^{12} - \frac{32}{113} a^{11} - \frac{2}{113} a^{10} + \frac{52}{113} a^{9} - \frac{18}{113} a^{8} - \frac{21}{113} a^{7} - \frac{44}{113} a^{6} - \frac{56}{113} a^{5} + \frac{19}{113} a^{4} + \frac{46}{113} a^{3} + \frac{37}{113} a^{2} - \frac{6}{113} a + \frac{14}{113}$, $\frac{1}{1367770287506511467794409571837555967549964280890409361571} a^{15} + \frac{1811171302251735847137316559970432361394629894114070127}{1367770287506511467794409571837555967549964280890409361571} a^{14} - \frac{23631826414167383680163269889427712180071344017046380607}{1367770287506511467794409571837555967549964280890409361571} a^{13} - \frac{104485003065795585873841895947160521849532907403088445546}{1367770287506511467794409571837555967549964280890409361571} a^{12} - \frac{62617152451030581958471684593345091239149825497725728161}{1367770287506511467794409571837555967549964280890409361571} a^{11} + \frac{30955717104849242975953133053357117022926603976502971740}{1367770287506511467794409571837555967549964280890409361571} a^{10} + \frac{3963596069145596602960035390914911915110632885729314998}{12104161836340809449508049308296955465043931689295658067} a^{9} - \frac{483891163127067186267039012573378694326159623484059278467}{1367770287506511467794409571837555967549964280890409361571} a^{8} + \frac{450879100389647412202881957368849594701403798163685285155}{1367770287506511467794409571837555967549964280890409361571} a^{7} - \frac{32002532234455841162711024195156416529479756936011383039}{1367770287506511467794409571837555967549964280890409361571} a^{6} + \frac{367366804873688252549333604460700719564011523262908933329}{1367770287506511467794409571837555967549964280890409361571} a^{5} + \frac{262623239516783972031584875959999281446375893366777030942}{1367770287506511467794409571837555967549964280890409361571} a^{4} + \frac{548227997753212479891941902174554863391144676669375928372}{1367770287506511467794409571837555967549964280890409361571} a^{3} - \frac{226244737646774248547593491914924404874887183986982243841}{1367770287506511467794409571837555967549964280890409361571} a^{2} - \frac{174500399496401998791750089352225734404069129752978941560}{1367770287506511467794409571837555967549964280890409361571} a + \frac{509380960472968466757356843372033118673836963855903381818}{1367770287506511467794409571837555967549964280890409361571}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 41336464901.6 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | R | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.8.4.2 | $x^{8} - 1331 x^{2} + 29282$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |
| 11.8.0.1 | $x^{8} + x^{2} - 2 x + 6$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 97 | Data not computed | ||||||