Normalized defining polynomial
\( x^{16} - 6 x^{15} - 61 x^{14} + 129 x^{13} + 1709 x^{12} + 11091 x^{11} - 31783 x^{10} - 454524 x^{9} + 25606 x^{8} + 6052602 x^{7} + 10610353 x^{6} - 30220476 x^{5} - 125101939 x^{4} - 49470471 x^{3} + 344285185 x^{2} + 698844519 x + 585525649 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(92534813992455271438265413802888409=3^{12}\cdot 89^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $153.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{44} a^{14} - \frac{1}{22} a^{13} + \frac{1}{11} a^{12} - \frac{1}{44} a^{11} - \frac{5}{44} a^{10} - \frac{1}{22} a^{9} - \frac{7}{22} a^{8} - \frac{2}{11} a^{7} - \frac{1}{2} a^{6} - \frac{3}{22} a^{5} - \frac{7}{44} a^{4} - \frac{1}{11} a^{3} - \frac{4}{11} a^{2} - \frac{21}{44} a + \frac{15}{44}$, $\frac{1}{14778648639472525184217036248228920345763033586959589745192} a^{15} - \frac{46193200481253395680838627182852436895388545852805128963}{14778648639472525184217036248228920345763033586959589745192} a^{14} + \frac{857202871310539449786536483203145125946444529152509685217}{7389324319736262592108518124114460172881516793479794872596} a^{13} + \frac{523698950667321257970688240108389407270740926610808062943}{14778648639472525184217036248228920345763033586959589745192} a^{12} + \frac{1668998219306720625550460996372801287796150954190474095401}{7389324319736262592108518124114460172881516793479794872596} a^{11} - \frac{3341080362749660067094982877480217238761364727245328527603}{14778648639472525184217036248228920345763033586959589745192} a^{10} + \frac{340497217787180601030590392932824606193405805783560061375}{1847331079934065648027129531028615043220379198369948718149} a^{9} + \frac{797387362515800090219546211819173990614079334125738920539}{1847331079934065648027129531028615043220379198369948718149} a^{8} + \frac{496635495844707960930237521841780716495046787280635488177}{7389324319736262592108518124114460172881516793479794872596} a^{7} - \frac{983109731268835980101679583858624587588762217722551268005}{3694662159868131296054259062057230086440758396739897436298} a^{6} + \frac{492145186850098164862971673731029155012554426929284243277}{14778648639472525184217036248228920345763033586959589745192} a^{5} - \frac{6432692643524417816144376724931998889809172767888115365545}{14778648639472525184217036248228920345763033586959589745192} a^{4} - \frac{1456953610177799229989833543372888311385931842112109228609}{7389324319736262592108518124114460172881516793479794872596} a^{3} + \frac{579686387763508900167651869954111330745746862857692992701}{1343513512679320471292457840748083667796639416996326340472} a^{2} + \frac{3685825934110806504499391922872634126248867745189578042057}{7389324319736262592108518124114460172881516793479794872596} a + \frac{4102725199396662539687852882598720333486928007971956183457}{14778648639472525184217036248228920345763033586959589745192}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 507241262351 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{89}) \), 4.4.704969.1, 8.8.3582738126537849.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ | $16$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 89 | Data not computed | ||||||