Normalized defining polynomial
\( x^{16} - 4 x^{15} + 2 x^{14} + 10 x^{13} + 4 x^{12} - 18 x^{11} - 144 x^{10} + 196 x^{9} - 229 x^{8} + 814 x^{7} - 424 x^{6} - 1208 x^{5} + 1626 x^{4} - 890 x^{3} + 390 x^{2} - 150 x + 25 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(922091585536000000000000=2^{28}\cdot 5^{12}\cdot 11^{4}\cdot 31^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{45} a^{12} - \frac{1}{9} a^{11} - \frac{7}{45} a^{10} + \frac{7}{45} a^{9} - \frac{2}{9} a^{8} + \frac{1}{5} a^{7} - \frac{8}{45} a^{6} - \frac{2}{45} a^{5} - \frac{1}{3} a^{4} + \frac{4}{15} a^{3} + \frac{14}{45} a^{2} + \frac{2}{9} a - \frac{4}{9}$, $\frac{1}{45} a^{13} - \frac{2}{45} a^{11} + \frac{2}{45} a^{10} - \frac{4}{9} a^{9} + \frac{4}{45} a^{8} + \frac{22}{45} a^{7} + \frac{2}{5} a^{6} + \frac{1}{9} a^{5} - \frac{2}{5} a^{4} - \frac{16}{45} a^{3} - \frac{2}{9} a^{2} + \frac{4}{9}$, $\frac{1}{135} a^{14} - \frac{8}{135} a^{11} - \frac{19}{135} a^{10} + \frac{16}{45} a^{9} - \frac{13}{135} a^{8} + \frac{22}{45} a^{7} + \frac{34}{135} a^{6} - \frac{37}{135} a^{5} + \frac{44}{135} a^{4} + \frac{14}{135} a^{3} + \frac{28}{135} a^{2} - \frac{1}{27} a - \frac{11}{27}$, $\frac{1}{125792609075235} a^{15} - \frac{31798161109}{125792609075235} a^{14} - \frac{99938259034}{41930869691745} a^{13} + \frac{909273019528}{125792609075235} a^{12} + \frac{8088507357727}{125792609075235} a^{11} + \frac{9873974196043}{125792609075235} a^{10} - \frac{44541838210663}{125792609075235} a^{9} - \frac{3796578897580}{25158521815047} a^{8} + \frac{5550647071421}{25158521815047} a^{7} + \frac{30325700067913}{125792609075235} a^{6} - \frac{3486314148298}{8386173938349} a^{5} - \frac{8446432659457}{41930869691745} a^{4} - \frac{34437930168844}{125792609075235} a^{3} + \frac{16799923096394}{41930869691745} a^{2} - \frac{3020607655804}{25158521815047} a + \frac{1750481668295}{25158521815047}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1739973.92982 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 97 conjugacy class representatives for t16n1086 are not computed |
| Character table for t16n1086 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.4400.1, \(\Q(\zeta_{20})^+\), 4.4.22000.1, 8.8.7744000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $11$ | 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $31$ | 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.4.2.2 | $x^{4} - 31 x^{2} + 11532$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 31.4.0.1 | $x^{4} - 2 x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |