Normalized defining polynomial
\( x^{16} - 4 x^{15} - 13 x^{14} + 3302 x^{13} - 404406 x^{12} + 658728 x^{11} - 23802748 x^{10} + 148149418 x^{9} + 3248725095 x^{8} - 13221233432 x^{7} + 23779425890 x^{6} + 491265567999 x^{5} - 4182022415068 x^{4} - 12864900236774 x^{3} + 35128190290939 x^{2} + 189418201227147 x + 234513710016293 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(91893109235660349920453207629584126297211854041=41^{15}\cdot 79^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $861.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{42149} a^{14} + \frac{15721}{42149} a^{13} - \frac{107}{42149} a^{12} - \frac{4259}{42149} a^{11} + \frac{5581}{42149} a^{10} - \frac{19290}{42149} a^{9} - \frac{17996}{42149} a^{8} - \frac{13432}{42149} a^{7} + \frac{17039}{42149} a^{6} - \frac{19043}{42149} a^{5} + \frac{4898}{42149} a^{4} - \frac{4575}{42149} a^{3} + \frac{14562}{42149} a^{2} - \frac{13300}{42149} a - \frac{13772}{42149}$, $\frac{1}{216551214318960148149370730099655097303082922795033124977672053569466848339668029964074706388800637021746443} a^{15} + \frac{37070953533966561728975664610391933940185709104870875219056337497167223103513231794932928884570937272}{216551214318960148149370730099655097303082922795033124977672053569466848339668029964074706388800637021746443} a^{14} + \frac{91678416927303674605738296942158574777914120829461715995654101457657352856412209048352015118146361706084286}{216551214318960148149370730099655097303082922795033124977672053569466848339668029964074706388800637021746443} a^{13} - \frac{56111800643725958240320095755898347403569025243907153353877573562843495396801397222813705998242104365028652}{216551214318960148149370730099655097303082922795033124977672053569466848339668029964074706388800637021746443} a^{12} - \frac{55998513253392395654402464119027364933502058762467995240760437203677745253920034865430927102128257688296599}{216551214318960148149370730099655097303082922795033124977672053569466848339668029964074706388800637021746443} a^{11} - \frac{66045897342602720913566668390907689105737699123008095169003148723752185894985349525560675428932957957207102}{216551214318960148149370730099655097303082922795033124977672053569466848339668029964074706388800637021746443} a^{10} + \frac{36402527281145707645078524600884845311886544127888172843343218077885115702849574330506943480410050745741979}{216551214318960148149370730099655097303082922795033124977672053569466848339668029964074706388800637021746443} a^{9} + \frac{15271202128392920155470278864782160269360015888782140187847559845980371874705602639660645013418780414286355}{216551214318960148149370730099655097303082922795033124977672053569466848339668029964074706388800637021746443} a^{8} + \frac{71028306238928706163200199826185694534844193001289425866442462311256828338120720609645518215689468710653030}{216551214318960148149370730099655097303082922795033124977672053569466848339668029964074706388800637021746443} a^{7} + \frac{99512445007510222657739153198525984983227091621198610313338670837072120559521934629140397483443512114313335}{216551214318960148149370730099655097303082922795033124977672053569466848339668029964074706388800637021746443} a^{6} - \frac{40316424058015411923230103035085158860417553912347167882962670287768585156441256282167919775851564232543556}{216551214318960148149370730099655097303082922795033124977672053569466848339668029964074706388800637021746443} a^{5} + \frac{25531612702467465018812647208049061193006251096582553983326218328334755133474718243553852325100938392435838}{216551214318960148149370730099655097303082922795033124977672053569466848339668029964074706388800637021746443} a^{4} - \frac{87237900728240415047109036314825454946557479542036623473419353975850658143904381878957329994688940413968176}{216551214318960148149370730099655097303082922795033124977672053569466848339668029964074706388800637021746443} a^{3} - \frac{69594735173719148159380356053559473284197111448056986974924254804430512851652438344297236649864775493992424}{216551214318960148149370730099655097303082922795033124977672053569466848339668029964074706388800637021746443} a^{2} - \frac{96693467740535313462407330114156612021183994914182422193637057812419916314823001635912201417949917101655756}{216551214318960148149370730099655097303082922795033124977672053569466848339668029964074706388800637021746443} a - \frac{29519156216196940085161353464670244256132958347749110123035707943695899748958737751994493477301556677611163}{216551214318960148149370730099655097303082922795033124977672053569466848339668029964074706388800637021746443}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 230175324509000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.8.7585694742761134361.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 41 | Data not computed | ||||||
| 79 | Data not computed | ||||||