Normalized defining polynomial
\( x^{16} - 4 x^{14} - 530 x^{12} + 1604 x^{10} + 17321 x^{8} - 37320 x^{6} - 92560 x^{4} + 111488 x^{2} + 43264 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(91603437103816431399094670113021609=13^{6}\cdot 17^{12}\cdot 2389^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $153.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 17, 2389$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{4} + \frac{1}{8} a^{3} + \frac{1}{8} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{6} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{16} a^{7} - \frac{1}{8} a^{4} + \frac{3}{16} a^{3} + \frac{1}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{448} a^{8} - \frac{1}{224} a^{6} + \frac{13}{448} a^{4} - \frac{3}{112} a^{2} + \frac{13}{28}$, $\frac{1}{448} a^{9} - \frac{1}{224} a^{7} + \frac{13}{448} a^{5} - \frac{3}{112} a^{3} + \frac{13}{28} a$, $\frac{1}{11648} a^{10} - \frac{1}{896} a^{9} + \frac{1}{2912} a^{8} + \frac{1}{448} a^{7} + \frac{561}{11648} a^{6} - \frac{13}{896} a^{5} + \frac{705}{5824} a^{4} - \frac{53}{224} a^{3} - \frac{17}{112} a^{2} - \frac{27}{56} a - \frac{11}{28}$, $\frac{1}{11648} a^{11} - \frac{9}{11648} a^{9} - \frac{141}{11648} a^{7} - \frac{215}{11648} a^{5} + \frac{11}{224} a^{3} + \frac{3}{8} a - \frac{1}{2}$, $\frac{1}{23296} a^{12} - \frac{1}{23296} a^{10} - \frac{1}{896} a^{9} - \frac{5}{23296} a^{8} + \frac{1}{448} a^{7} + \frac{1153}{23296} a^{6} - \frac{13}{896} a^{5} - \frac{339}{5824} a^{4} - \frac{53}{224} a^{3} + \frac{3}{112} a^{2} - \frac{27}{56} a + \frac{5}{14}$, $\frac{1}{46592} a^{13} - \frac{1}{46592} a^{12} - \frac{1}{46592} a^{11} - \frac{1}{46592} a^{10} - \frac{31}{46592} a^{9} - \frac{3}{46592} a^{8} + \frac{1205}{46592} a^{7} - \frac{25}{512} a^{6} - \frac{121}{3328} a^{5} + \frac{545}{5824} a^{4} - \frac{103}{448} a^{3} - \frac{1}{16} a^{2} + \frac{1}{16} a + \frac{1}{56}$, $\frac{1}{15421952} a^{14} + \frac{81}{7710976} a^{12} - \frac{1}{23296} a^{11} + \frac{17}{481936} a^{10} + \frac{9}{23296} a^{9} + \frac{1931}{7710976} a^{8} - \frac{587}{23296} a^{7} - \frac{390857}{15421952} a^{6} - \frac{1241}{23296} a^{5} + \frac{59711}{963872} a^{4} - \frac{81}{448} a^{3} - \frac{225}{2317} a^{2} - \frac{3}{16} a + \frac{6185}{18536}$, $\frac{1}{30843904} a^{15} + \frac{81}{15421952} a^{13} - \frac{1}{46592} a^{12} - \frac{15}{593152} a^{11} - \frac{1}{46592} a^{10} + \frac{16495}{15421952} a^{9} + \frac{7}{6656} a^{8} + \frac{725275}{30843904} a^{7} - \frac{183}{3584} a^{6} + \frac{91487}{1927744} a^{5} - \frac{197}{11648} a^{4} + \frac{5151}{37072} a^{3} + \frac{11}{224} a^{2} + \frac{12805}{37072} a + \frac{1}{4}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1227146937300 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2048 |
| The 80 conjugacy class representatives for t16n1392 are not computed |
| Character table for t16n1392 is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 4.4.152583041.1, 4.4.8975473.1, 8.8.23281584400807681.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $17$ | 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 2389 | Data not computed | ||||||