Normalized defining polynomial
\( x^{16} - 4 x^{15} - 22 x^{14} + 138 x^{13} - 96 x^{12} - 1370 x^{11} + 5206 x^{10} - 1564 x^{9} - 35133 x^{8} + 88226 x^{7} + 6130 x^{6} - 378620 x^{5} + 458022 x^{4} + 336786 x^{3} - 547964 x^{2} - 148970 x + 5959 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(90939508218265868697600000000=2^{24}\cdot 3^{8}\cdot 5^{8}\cdot 59^{2}\cdot 157^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 59, 157$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{10} a^{12} + \frac{1}{5} a^{11} + \frac{1}{5} a^{10} + \frac{1}{10} a^{9} - \frac{1}{10} a^{8} + \frac{1}{5} a^{7} - \frac{1}{10} a^{5} - \frac{1}{10} a^{4} - \frac{2}{5} a^{2} + \frac{3}{10} a - \frac{2}{5}$, $\frac{1}{10} a^{13} - \frac{1}{5} a^{11} + \frac{1}{5} a^{10} + \frac{1}{5} a^{9} - \frac{1}{10} a^{8} - \frac{2}{5} a^{7} + \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{3}{10} a^{4} - \frac{2}{5} a^{3} - \frac{2}{5} a^{2} - \frac{1}{2} a + \frac{3}{10}$, $\frac{1}{10} a^{14} + \frac{1}{10} a^{11} + \frac{1}{10} a^{10} + \frac{1}{10} a^{9} - \frac{1}{10} a^{8} + \frac{3}{10} a^{7} + \frac{1}{10} a^{6} - \frac{1}{2} a^{5} - \frac{1}{10} a^{4} + \frac{1}{10} a^{3} + \frac{1}{5} a^{2} - \frac{1}{10} a - \frac{3}{10}$, $\frac{1}{134646053714326824497611075173085550} a^{15} + \frac{1921329555266832668518624753422113}{134646053714326824497611075173085550} a^{14} + \frac{583384168512552564276295173880429}{134646053714326824497611075173085550} a^{13} + \frac{1643682353648711451038226289845621}{134646053714326824497611075173085550} a^{12} - \frac{14710589067508107262393766505556062}{67323026857163412248805537586542775} a^{11} - \frac{5730029393627292143646798330268724}{67323026857163412248805537586542775} a^{10} + \frac{3330953687666786246601739341551123}{13464605371432682449761107517308555} a^{9} - \frac{20313064719871858638073418688610329}{134646053714326824497611075173085550} a^{8} - \frac{4436035331015776853757265769897293}{67323026857163412248805537586542775} a^{7} + \frac{4375212753380131062682856567184087}{67323026857163412248805537586542775} a^{6} - \frac{29388262464478737718520498013241386}{67323026857163412248805537586542775} a^{5} - \frac{10891483804484566842485037522580619}{134646053714326824497611075173085550} a^{4} - \frac{23255985617199641882664643037507141}{134646053714326824497611075173085550} a^{3} + \frac{22705996959765676262446169746020959}{134646053714326824497611075173085550} a^{2} - \frac{65743416495975026689446915538139671}{134646053714326824497611075173085550} a + \frac{18812144397361608387558742451614469}{67323026857163412248805537586542775}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 762229199.577 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12288 |
| The 74 conjugacy class representatives for t16n1765 are not computed |
| Character table for t16n1765 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 8.4.5111216640000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 59 | Data not computed | ||||||
| $157$ | 157.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 157.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 157.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 157.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 157.8.4.1 | $x^{8} + 739470 x^{4} - 3869893 x^{2} + 136703970225$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |