Normalized defining polynomial
\( x^{16} - 3 x^{15} - 786 x^{14} + 2345 x^{13} + 227127 x^{12} - 877763 x^{11} - 29621345 x^{10} + 175767416 x^{9} + 1582675217 x^{8} - 17659077219 x^{7} + 3690014449 x^{6} + 756003618333 x^{5} - 3545496769300 x^{4} - 5114937956805 x^{3} + 89221420987155 x^{2} - 274349832137406 x + 284965015118076 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9049517470391542347782977198790354514633273409=29^{10}\cdot 173^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $745.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $29, 173$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{18} a^{12} - \frac{1}{18} a^{11} + \frac{1}{18} a^{7} - \frac{1}{2} a^{6} - \frac{4}{9} a^{5} - \frac{1}{9} a^{4} - \frac{4}{9} a^{3} - \frac{1}{18} a^{2} - \frac{1}{2} a$, $\frac{1}{18} a^{13} - \frac{1}{18} a^{11} + \frac{1}{18} a^{8} - \frac{4}{9} a^{7} + \frac{1}{18} a^{6} + \frac{4}{9} a^{5} + \frac{4}{9} a^{4} - \frac{1}{2} a^{3} + \frac{4}{9} a^{2} - \frac{1}{2} a$, $\frac{1}{11934} a^{14} - \frac{149}{11934} a^{13} - \frac{59}{11934} a^{12} - \frac{209}{3978} a^{11} - \frac{19}{1989} a^{10} + \frac{955}{11934} a^{9} + \frac{965}{11934} a^{8} + \frac{151}{918} a^{7} + \frac{17}{78} a^{6} + \frac{430}{1989} a^{5} + \frac{3295}{11934} a^{4} + \frac{337}{918} a^{3} - \frac{1409}{3978} a^{2} - \frac{37}{1326} a + \frac{45}{221}$, $\frac{1}{44868189086151065854280286047968883327965023681104012172928868449888025876157094047131196} a^{15} - \frac{2019934210066060419399442173162203857714939005907320148388631058942289367279174245}{131193535339622999573918965052540594526213519535391848458856340496748613672973959202138} a^{14} - \frac{111723745636917789380941282806625442943903337475618623858514436271655903884652192403353}{7478031514358510975713381007994813887994170613517335362154811408314670979359515674521866} a^{13} + \frac{357326897791656294808448417443249250342696621029656555190626418206730102056640715670191}{44868189086151065854280286047968883327965023681104012172928868449888025876157094047131196} a^{12} + \frac{17534927905390502478865597720746146227670833316482876693491554814552613214809250069957}{131193535339622999573918965052540594526213519535391848458856340496748613672973959202138} a^{11} + \frac{3208505490084215288512332641303005358508340913882734166001145154985263922842616772555873}{44868189086151065854280286047968883327965023681104012172928868449888025876157094047131196} a^{10} - \frac{541158785706697398442336991088597550255802665489307838387738069767881924631067813349196}{11217047271537766463570071511992220831991255920276003043232217112472006469039273511782799} a^{9} - \frac{2574070113502009282469594653854704792503126770187425918264979205688689671529486248826429}{22434094543075532927140143023984441663982511840552006086464434224944012938078547023565598} a^{8} - \frac{9419288128743059883464561196060203375147127058073321326044156019954420301653510058219653}{44868189086151065854280286047968883327965023681104012172928868449888025876157094047131196} a^{7} - \frac{1445636552201578051012005487778611660445401498090514005206125032276199785188656531553253}{3739015757179255487856690503997406943997085306758667681077405704157335489679757837260933} a^{6} + \frac{6923306475113318419188841829892479028085188659332705419543100707804501390656589162407971}{44868189086151065854280286047968883327965023681104012172928868449888025876157094047131196} a^{5} - \frac{1064789319055311592255672511408891398934749768632251522961487130953376931498678323732546}{3739015757179255487856690503997406943997085306758667681077405704157335489679757837260933} a^{4} - \frac{1486089862033403610060254617174607106566197013619454955438914102282004594478237954363893}{22434094543075532927140143023984441663982511840552006086464434224944012938078547023565598} a^{3} + \frac{38994718985773953417985825678961259208308622329897938391522663200800426435760684908889}{107597575746165625549832820258918185438765044798810580750428941126829798264165693158588} a^{2} + \frac{65854646835800342287184797399589594163719240250648204361220963587916107601624754139194}{138482065080713166216914463111015071999892048398469173373237248302123536654805845824479} a + \frac{40488912218846472704918488201960569922110535547924744957342092840142063751931259517395}{415446195242139498650743389333045215999676145195407520119711744906370609964417537473437}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 214265958934000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times OD_{16}).C_2$ (as 16T123):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $(C_2\times OD_{16}).C_2$ |
| Character table for $(C_2\times OD_{16}).C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5017}) \), \(\Q(\sqrt{173}) \), \(\Q(\sqrt{29}) \), 4.4.4354459997.1 x2, 4.4.150153793.1 x2, \(\Q(\sqrt{29}, \sqrt{173})\), 8.8.18961321865473240009.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $29$ | 29.8.4.1 | $x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 29.8.6.2 | $x^{8} + 145 x^{4} + 7569$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $173$ | 173.8.7.2 | $x^{8} - 692$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 173.8.7.2 | $x^{8} - 692$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |