Normalized defining polynomial
\( x^{16} - 4 x^{15} - 53 x^{14} - 88 x^{13} + 1228 x^{12} + 7006 x^{11} - 1111 x^{10} - 117429 x^{9} - 223672 x^{8} + 843227 x^{7} + 112567 x^{6} + 2803743 x^{5} + 3175065 x^{4} - 15094129 x^{3} - 16279720 x^{2} + 21707769 x + 4289443 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(90390672967514567934462041097091729=61^{4}\cdot 97^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $153.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{6} - \frac{1}{6} a^{5} - \frac{1}{3} a^{3} + \frac{1}{6} a^{2} - \frac{1}{3} a - \frac{1}{6}$, $\frac{1}{6} a^{11} + \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{6}$, $\frac{1}{24} a^{12} + \frac{1}{24} a^{11} - \frac{1}{24} a^{10} - \frac{1}{24} a^{9} - \frac{1}{4} a^{8} + \frac{3}{8} a^{7} + \frac{1}{12} a^{6} - \frac{7}{24} a^{5} - \frac{1}{4} a^{4} + \frac{11}{24} a^{3} + \frac{1}{8} a^{2} - \frac{1}{4} a + \frac{1}{24}$, $\frac{1}{24} a^{13} - \frac{1}{12} a^{11} - \frac{5}{24} a^{9} + \frac{1}{8} a^{8} - \frac{7}{24} a^{7} - \frac{3}{8} a^{6} + \frac{1}{24} a^{5} + \frac{5}{24} a^{4} - \frac{1}{3} a^{3} + \frac{1}{8} a^{2} - \frac{5}{24} a + \frac{11}{24}$, $\frac{1}{792} a^{14} - \frac{1}{396} a^{13} + \frac{5}{396} a^{12} - \frac{1}{198} a^{11} - \frac{19}{264} a^{10} - \frac{25}{264} a^{9} + \frac{167}{792} a^{8} + \frac{277}{792} a^{7} + \frac{65}{264} a^{6} + \frac{61}{264} a^{5} - \frac{97}{396} a^{4} + \frac{287}{792} a^{3} + \frac{185}{792} a^{2} + \frac{101}{792} a + \frac{97}{396}$, $\frac{1}{2447574791810849139108159309936203160887155830287976} a^{15} + \frac{53862463736760845833021865360836742171613157703}{222506799255531739918923573630563923717014166389816} a^{14} + \frac{37479315382086199808313092428942779648943045454515}{2447574791810849139108159309936203160887155830287976} a^{13} + \frac{24153996142302030315136975787989241654842677495223}{1223787395905424569554079654968101580443577915143988} a^{12} - \frac{13828831756844387777086314602905309651835516045191}{271952754645649904345351034437355906765239536698664} a^{11} - \frac{21140180976397452349777414140930882843169678214503}{407929131968474856518026551656033860147859305047996} a^{10} + \frac{473991752298936143254595018356305744392626151357087}{2447574791810849139108159309936203160887155830287976} a^{9} + \frac{18863836684380638779719138030417955191687008770231}{2447574791810849139108159309936203160887155830287976} a^{8} + \frac{231589803582457223703998292902554441547058458440379}{815858263936949713036053103312067720295718610095992} a^{7} + \frac{1839708150456952148292970930198706892136679995953}{271952754645649904345351034437355906765239536698664} a^{6} + \frac{332871768764073346946056794404571007055427065917703}{1223787395905424569554079654968101580443577915143988} a^{5} + \frac{220767990485339716469404590592957905045678396469025}{611893697952712284777039827484050790221788957571994} a^{4} - \frac{33119389320905554095719489737114177393307554141879}{111253399627765869959461786815281961858507083194908} a^{3} + \frac{292318782926574921758419192053329776894222853121521}{2447574791810849139108159309936203160887155830287976} a^{2} - \frac{28761918895630300988646126986385128392280280749941}{111253399627765869959461786815281961858507083194908} a - \frac{135742764853703659981927959531125680782199846708077}{271952754645649904345351034437355906765239536698664}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 164841310865 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n817 |
| Character table for t16n817 is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 61 | Data not computed | ||||||
| $97$ | 97.8.7.1 | $x^{8} - 97$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 97.8.7.1 | $x^{8} - 97$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |