Normalized defining polynomial
\( x^{16} - 4 x^{15} - 49 x^{14} + 286 x^{13} + 658 x^{12} - 8165 x^{11} + 11235 x^{10} + 45433 x^{9} - 202626 x^{8} + 266588 x^{7} + 134579 x^{6} - 900440 x^{5} + 1227748 x^{4} - 496607 x^{3} - 512251 x^{2} + 602034 x - 171211 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(90390672967514567934462041097091729=61^{4}\cdot 97^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $153.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{61} a^{14} + \frac{15}{61} a^{13} - \frac{22}{61} a^{12} + \frac{24}{61} a^{11} + \frac{19}{61} a^{10} - \frac{27}{61} a^{9} + \frac{25}{61} a^{8} - \frac{13}{61} a^{7} + \frac{29}{61} a^{6} + \frac{19}{61} a^{5} + \frac{29}{61} a^{4} + \frac{22}{61} a^{3} + \frac{13}{61} a^{2} - \frac{6}{61} a - \frac{25}{61}$, $\frac{1}{229417744665592097121374867307424813834327} a^{15} + \frac{192972385543917925191585460459148222177}{229417744665592097121374867307424813834327} a^{14} + \frac{33720190921558995866251342895886756975883}{229417744665592097121374867307424813834327} a^{13} - \frac{105349537897937784104385066007110182779777}{229417744665592097121374867307424813834327} a^{12} - \frac{97554300286782169266759536300173022258376}{229417744665592097121374867307424813834327} a^{11} - \frac{100063625045535305640986844134785703059612}{229417744665592097121374867307424813834327} a^{10} - \frac{105892200508441031293122538571472923715657}{229417744665592097121374867307424813834327} a^{9} - \frac{2088899541464033797864045991648682396778}{229417744665592097121374867307424813834327} a^{8} - \frac{569381184136745816749846148772977504215}{3760946633862165526579915857498767439907} a^{7} + \frac{10634873806844341388078805791015063985788}{229417744665592097121374867307424813834327} a^{6} - \frac{7743117871028649493310644349515095506668}{229417744665592097121374867307424813834327} a^{5} + \frac{2112658356593773074208140474519271395696}{229417744665592097121374867307424813834327} a^{4} - \frac{26131380138545354635457797430844006655695}{229417744665592097121374867307424813834327} a^{3} - \frac{37321830045400056865634111795873634097690}{229417744665592097121374867307424813834327} a^{2} - \frac{21036946258484678969364283862405298882093}{229417744665592097121374867307424813834327} a + \frac{86673616069465510368635440577776042348017}{229417744665592097121374867307424813834327}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 297876026262 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 40 conjugacy class representatives for t16n1194 |
| Character table for t16n1194 is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 61 | Data not computed | ||||||
| $97$ | 97.8.7.1 | $x^{8} - 97$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 97.8.7.1 | $x^{8} - 97$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |