Normalized defining polynomial
\( x^{16} - 4 x^{15} - 41 x^{14} + 161 x^{13} - 404736 x^{12} - 1484709 x^{11} - 13645887 x^{10} - 139487100 x^{9} + 43904988053 x^{8} + 345679229513 x^{7} + 3340517012461 x^{6} + 18731643146726 x^{5} - 1430607533707472 x^{4} - 12848087213470847 x^{3} - 30969923082952135 x^{2} - 11643515053935122 x + 26882036630663087 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9008789808170658548806656862365268212872206896031561=53^{14}\cdot 97^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1766.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $53, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{97} a^{8} - \frac{2}{97} a^{7} + \frac{26}{97} a^{6} - \frac{13}{97} a^{5} - \frac{2}{97} a^{4} - \frac{19}{97} a^{3} - \frac{34}{97} a^{2} + \frac{44}{97} a + \frac{35}{97}$, $\frac{1}{291} a^{9} + \frac{1}{291} a^{8} + \frac{39}{97} a^{7} - \frac{43}{97} a^{6} + \frac{56}{291} a^{5} - \frac{25}{291} a^{4} + \frac{2}{97} a^{3} + \frac{13}{97} a^{2} - \frac{124}{291} a + \frac{8}{291}$, $\frac{1}{873} a^{10} - \frac{1}{873} a^{9} + \frac{4}{873} a^{8} + \frac{50}{291} a^{7} + \frac{47}{873} a^{6} + \frac{433}{873} a^{5} + \frac{278}{873} a^{4} + \frac{130}{291} a^{3} - \frac{211}{873} a^{2} + \frac{319}{873} a + \frac{173}{873}$, $\frac{1}{2619} a^{11} + \frac{1}{873} a^{9} + \frac{1}{2619} a^{8} - \frac{1243}{2619} a^{7} + \frac{289}{873} a^{6} - \frac{88}{291} a^{5} + \frac{974}{2619} a^{4} - \frac{406}{2619} a^{3} - \frac{89}{291} a^{2} - \frac{334}{873} a + \frac{56}{2619}$, $\frac{1}{738558} a^{12} + \frac{17}{369279} a^{11} + \frac{91}{246186} a^{10} - \frac{70}{369279} a^{9} + \frac{497}{246186} a^{8} + \frac{156679}{369279} a^{7} + \frac{18020}{123093} a^{6} + \frac{218423}{738558} a^{5} - \frac{27925}{369279} a^{4} + \frac{298919}{738558} a^{3} - \frac{30473}{123093} a^{2} - \frac{224227}{738558} a - \frac{7805}{15714}$, $\frac{1}{6245985006} a^{13} - \frac{1052}{3122992503} a^{12} - \frac{515723}{6245985006} a^{11} - \frac{1710649}{3122992503} a^{10} + \frac{6239731}{6245985006} a^{9} + \frac{1140562}{3122992503} a^{8} - \frac{747447509}{3122992503} a^{7} + \frac{956430707}{6245985006} a^{6} + \frac{57253652}{1040997501} a^{5} + \frac{42467575}{693998334} a^{4} + \frac{551981473}{3122992503} a^{3} + \frac{463935173}{6245985006} a^{2} - \frac{456288497}{6245985006} a + \frac{14267174}{66446649}$, $\frac{1}{268818618920826762} a^{14} + \frac{44485}{953257513903641} a^{13} + \frac{32610241337}{89606206306942254} a^{12} - \frac{5423019886790}{134409309460413381} a^{11} - \frac{51444418259977}{268818618920826762} a^{10} + \frac{3629021525584}{44803103153471127} a^{9} - \frac{159899724458596}{134409309460413381} a^{8} - \frac{45347434290457397}{268818618920826762} a^{7} + \frac{34010631059278747}{134409309460413381} a^{6} + \frac{24171756647876017}{89606206306942254} a^{5} - \frac{38868111442459955}{134409309460413381} a^{4} - \frac{37059837637352525}{268818618920826762} a^{3} + \frac{12889715948860583}{89606206306942254} a^{2} - \frac{11865351905525125}{44803103153471127} a + \frac{1258215103832090}{2859772541710923}$, $\frac{1}{873292543158235361115682366400591805474368352042156690412773055101404793284444814} a^{15} - \frac{103159755861970612886416353473091638186947653885613276290317735}{873292543158235361115682366400591805474368352042156690412773055101404793284444814} a^{14} + \frac{1263266665354555861569470210160822654110251514035324767206418872247341}{16172084132559914094734858637047996397673488000780679452088389909285273949711941} a^{13} - \frac{17883184504789085561579675029804169308381679227371779366217731330186651930}{436646271579117680557841183200295902737184176021078345206386527550702396642222407} a^{12} - \frac{24077691681796712747271081945056731204465263449908222510130991767252157224470}{436646271579117680557841183200295902737184176021078345206386527550702396642222407} a^{11} + \frac{220757366163066821870314540365369882325513413637176471096349361804239365134629}{436646271579117680557841183200295902737184176021078345206386527550702396642222407} a^{10} - \frac{891994169386745215707966298367529841130643556528637758323514335935639657439545}{873292543158235361115682366400591805474368352042156690412773055101404793284444814} a^{9} + \frac{1351936059398158645307613739413221276197168825783112082589706541399945367151317}{436646271579117680557841183200295902737184176021078345206386527550702396642222407} a^{8} - \frac{27568907393636617569766328740710519182107884280054217991782277463414054652195021}{97032504795359484568409151822287978386040928004684076712530339455711643698271646} a^{7} - \frac{52952548217004061333081736443494613024551937338879692913681369881716585987376936}{436646271579117680557841183200295902737184176021078345206386527550702396642222407} a^{6} + \frac{197996111849109164289184351602258579395147584726404953552665085898213108581302159}{436646271579117680557841183200295902737184176021078345206386527550702396642222407} a^{5} + \frac{26572113261331146697591570004324014847728673840006083923221659714101617182318582}{145548757193039226852613727733431967579061392007026115068795509183567465547407469} a^{4} + \frac{123388979586040658502137097442994648317495141662793886833017214535857655434111351}{873292543158235361115682366400591805474368352042156690412773055101404793284444814} a^{3} + \frac{665063179582082226803506098963823076801398883799847529716276260620948290967620}{48516252397679742284204575911143989193020464002342038356265169727855821849135823} a^{2} - \frac{198606415081992728134412289779922066976811345116647269958720119156775474680596994}{436646271579117680557841183200295902737184176021078345206386527550702396642222407} a - \frac{5685973575530906979490310535250373233105736698729668994426699582904413420237997}{18580692407622028959908135455331740542007837277492695540697299044710740282647762}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22257618600600000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_8.C_4$ |
| Character table for $C_8.C_4$ |
Intermediate fields
| \(\Q(\sqrt{97}) \), \(\Q(\sqrt{53}) \), \(\Q(\sqrt{5141}) \), \(\Q(\sqrt{53}, \sqrt{97})\), 8.8.18462292327593524004841.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{16}$ | R | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $53$ | 53.8.7.1 | $x^{8} - 53$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 53.8.7.1 | $x^{8} - 53$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $97$ | 97.8.7.4 | $x^{8} - 1515625$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 97.8.7.4 | $x^{8} - 1515625$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |