Normalized defining polynomial
\( x^{16} - 4 x^{15} - 118 x^{14} + 1064 x^{13} - 4490 x^{12} - 11968 x^{11} + 247268 x^{10} + 52168 x^{9} - 6108960 x^{8} + 1905944 x^{7} + 102497032 x^{6} - 241115296 x^{5} - 104734960 x^{4} - 159744048 x^{3} - 5593072 x^{2} + 27381472 x + 1068656 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(88114204274383121870561308973465600000000=2^{24}\cdot 5^{8}\cdot 13^{8}\cdot 101^{5}\cdot 199^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $362.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 101, 199$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{4} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{40} a^{12} - \frac{1}{20} a^{11} - \frac{1}{10} a^{10} - \frac{1}{10} a^{9} + \frac{1}{10} a^{8} - \frac{1}{5} a^{7} - \frac{1}{10} a^{6} - \frac{1}{10} a^{5} - \frac{1}{10} a^{4} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} - \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{760} a^{13} - \frac{1}{380} a^{12} - \frac{47}{380} a^{11} - \frac{17}{380} a^{10} - \frac{43}{380} a^{9} - \frac{1}{20} a^{8} - \frac{21}{190} a^{7} - \frac{23}{95} a^{6} - \frac{8}{95} a^{5} - \frac{7}{190} a^{4} + \frac{42}{95} a^{3} + \frac{2}{5} a^{2} + \frac{8}{95} a + \frac{9}{19}$, $\frac{1}{5320} a^{14} - \frac{3}{5320} a^{13} + \frac{41}{5320} a^{12} - \frac{99}{1330} a^{11} - \frac{51}{1330} a^{10} + \frac{233}{2660} a^{9} + \frac{243}{2660} a^{8} - \frac{3}{665} a^{7} - \frac{4}{665} a^{6} + \frac{33}{665} a^{5} + \frac{53}{1330} a^{4} + \frac{243}{665} a^{3} - \frac{239}{665} a^{2} - \frac{229}{665} a + \frac{69}{665}$, $\frac{1}{6673128152553263701019367885821781073840802625722277435800} a^{15} - \frac{557550036919291523411995432256897123532400177894259}{47665201089666169292995484898727007670291447326587695970} a^{14} - \frac{527900692152753096818854820997811886684275820298353136}{834141019069157962627420985727722634230100328215284679475} a^{13} - \frac{2556471879372270896111817094511116626021930218273374801}{238326005448330846464977424493635038351457236632938479850} a^{12} - \frac{152967073768245377682311836118772073904597713016664730851}{3336564076276631850509683942910890536920401312861138717900} a^{11} - \frac{79943793805746028409271166976400839088009257422662262387}{834141019069157962627420985727722634230100328215284679475} a^{10} + \frac{110723563448261732407884760759961222187246708800279275771}{1668282038138315925254841971455445268460200656430569358950} a^{9} + \frac{269028371213535676083446830131532894852473638627015878587}{3336564076276631850509683942910890536920401312861138717900} a^{8} - \frac{204959913296303875144467069043186145060169591282629749821}{1668282038138315925254841971455445268460200656430569358950} a^{7} - \frac{18468439148302337416193321627238427792612926457174464869}{238326005448330846464977424493635038351457236632938479850} a^{6} + \frac{20593432899787121798515538986068744100989455976043062988}{834141019069157962627420985727722634230100328215284679475} a^{5} + \frac{31832462163917460362352231805242882943561710404727351197}{166828203813831592525484197145544526846020065643056935895} a^{4} - \frac{7379150680275574543320019914194568361991490967062883858}{23832600544833084646497742449363503835145723663293847985} a^{3} + \frac{11590387340587882645890996248763444951649752005425420609}{834141019069157962627420985727722634230100328215284679475} a^{2} + \frac{276518182424978211735124750783598761440615597833452391462}{834141019069157962627420985727722634230100328215284679475} a - \frac{140293361241377094857124596705999771022165358881842602258}{834141019069157962627420985727722634230100328215284679475}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 119486682937000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4096 |
| The 94 conjugacy class representatives for t16n1581 are not computed |
| Character table for t16n1581 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.426725.1, 4.4.1358692400.1, 4.4.79600.1, 8.8.1846045037817760000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $101$ | $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 101.2.1.2 | $x^{2} + 202$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 101.8.4.1 | $x^{8} + 244824 x^{4} - 1030301 x^{2} + 14984697744$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $199$ | $\Q_{199}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{199}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{199}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{199}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{199}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{199}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 199.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 199.8.4.1 | $x^{8} + 237606 x^{4} - 7880599 x^{2} + 14114152809$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |