Normalized defining polynomial
\( x^{16} - 4 x^{15} - 30 x^{14} + 360 x^{13} - 1751 x^{12} + 146 x^{11} - 12508 x^{10} + 124450 x^{9} - 1113909 x^{8} + 3591426 x^{7} - 3705988 x^{6} - 7160878 x^{5} + 126060809 x^{4} - 403444758 x^{3} + 338879286 x^{2} + 76456848 x - 129643679 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(88114204274383121870561308973465600000000=2^{24}\cdot 5^{8}\cdot 13^{8}\cdot 101^{5}\cdot 199^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $362.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 101, 199$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{1}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{9} - \frac{1}{5} a^{7} + \frac{2}{5} a^{6} - \frac{1}{5} a^{5} - \frac{2}{5} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{10} + \frac{2}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{2} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{11} + \frac{2}{5} a^{7} - \frac{1}{5} a^{6} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{5} a^{12} - \frac{2}{5} a^{7} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} - \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{13} - \frac{1}{5} a^{6} - \frac{1}{5} a^{5} + \frac{2}{5} a^{3} - \frac{2}{5} a^{2} - \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{25} a^{14} - \frac{1}{25} a^{13} - \frac{1}{25} a^{12} + \frac{2}{25} a^{10} + \frac{2}{25} a^{9} + \frac{2}{25} a^{8} + \frac{1}{5} a^{7} - \frac{2}{5} a^{6} + \frac{11}{25} a^{5} - \frac{1}{25} a^{3} - \frac{4}{25} a^{2} - \frac{7}{25} a + \frac{2}{25}$, $\frac{1}{721221056582734884959680916913267398789863211020124600725} a^{15} + \frac{1012883091283932730866709808849641050979957839190711176}{721221056582734884959680916913267398789863211020124600725} a^{14} + \frac{11769881570826592814811882288354920289533000907251867622}{721221056582734884959680916913267398789863211020124600725} a^{13} - \frac{3604669200238538669747664138280545922889801555164352632}{65565550598430444087243719719387945344533019183647690975} a^{12} - \frac{4266185858251224778462603343677400052335875134657529813}{721221056582734884959680916913267398789863211020124600725} a^{11} + \frac{32015672329665135088921103368795240474258916766367337001}{721221056582734884959680916913267398789863211020124600725} a^{10} + \frac{46227931225892049834791707360321595754782467660332009566}{721221056582734884959680916913267398789863211020124600725} a^{9} + \frac{9540052684037985009331207021676792337747472169266022514}{721221056582734884959680916913267398789863211020124600725} a^{8} + \frac{7393888480556325853787851395895670599987787698629802146}{28848842263309395398387236676530695951594528440804984029} a^{7} - \frac{213084201140876221170985124682040570704986599361227088219}{721221056582734884959680916913267398789863211020124600725} a^{6} + \frac{32209056605565729263503093149958099464172773965344147797}{721221056582734884959680916913267398789863211020124600725} a^{5} - \frac{288489965555538863288249089584830287484547744316045519186}{721221056582734884959680916913267398789863211020124600725} a^{4} - \frac{170955638665860305562187578071143868361864706828450821521}{721221056582734884959680916913267398789863211020124600725} a^{3} + \frac{63270316482568809996054520580150132124905442422879290606}{144244211316546976991936183382653479757972642204024920145} a^{2} - \frac{120044328440233489709399222688166197811081352325644572802}{721221056582734884959680916913267398789863211020124600725} a - \frac{12536890072837731265969708612881183378494794531581311306}{65565550598430444087243719719387945344533019183647690975}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 108229332651000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4096 |
| The 94 conjugacy class representatives for t16n1581 are not computed |
| Character table for t16n1581 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.1358692400.1, 4.4.426725.1, 4.4.79600.1, 8.8.1846045037817760000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $101$ | $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 101.2.1.2 | $x^{2} + 202$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 101.8.4.1 | $x^{8} + 244824 x^{4} - 1030301 x^{2} + 14984697744$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $199$ | $\Q_{199}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{199}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{199}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{199}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{199}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{199}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 199.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 199.8.4.1 | $x^{8} + 237606 x^{4} - 7880599 x^{2} + 14114152809$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |