Normalized defining polynomial
\( x^{16} - 4 x^{15} - 29 x^{14} - 8787 x^{13} - 466626 x^{12} + 2577855 x^{11} + 104450131 x^{10} + 1646275166 x^{9} + 21202851621 x^{8} - 374714718069 x^{7} - 7222778406903 x^{6} - 23859158339510 x^{5} + 192307300221262 x^{4} + 4255857054532135 x^{3} + 29656924089445914 x^{2} + 79631144220170561 x + 97623421972208003 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(87995526059768479187762363921103601182604493355285937=61^{14}\cdot 73^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2037.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a$, $\frac{1}{48805782501095973464} a^{14} - \frac{5931664191177995427}{48805782501095973464} a^{13} - \frac{112512158740759511}{48805782501095973464} a^{12} - \frac{1889560776674104541}{48805782501095973464} a^{11} + \frac{4890862397023833941}{24402891250547986732} a^{10} + \frac{3447152357223395271}{12201445625273993366} a^{9} - \frac{18714637639306841407}{48805782501095973464} a^{8} - \frac{1623396512451191493}{48805782501095973464} a^{7} + \frac{16836664617814451249}{48805782501095973464} a^{6} - \frac{22415138087177949929}{48805782501095973464} a^{5} - \frac{11356078538756820703}{48805782501095973464} a^{4} - \frac{128068193320733715}{595192469525560652} a^{3} + \frac{16123868578562351425}{48805782501095973464} a^{2} + \frac{1518528023460734997}{24402891250547986732} a + \frac{10119222796559031133}{48805782501095973464}$, $\frac{1}{1017437683782216509295199163240217892817033912035336081677706769008022256327467231606536834526525193944} a^{15} - \frac{3371384941293452398828982102753103091864232814718933972993994291818007435049543495}{508718841891108254647599581620108946408516956017668040838853384504011128163733615803268417263262596972} a^{14} + \frac{30316199538052026828968176644045962150558865436634732360792984333324220620486790552996548678132470387}{508718841891108254647599581620108946408516956017668040838853384504011128163733615803268417263262596972} a^{13} + \frac{7975271919062426423644641498405751451565047799141268020806377565136046574290046948971639760279605355}{254359420945554127323799790810054473204258478008834020419426692252005564081866807901634208631631298486} a^{12} + \frac{121032491884658383267658599543725972407328085693780753679412545158919449092281076393692452225513044965}{1017437683782216509295199163240217892817033912035336081677706769008022256327467231606536834526525193944} a^{11} + \frac{24228969042049896638098644985193326860468303367893917034044198337496554554808157081060020818641597893}{508718841891108254647599581620108946408516956017668040838853384504011128163733615803268417263262596972} a^{10} + \frac{225571393615782418677505598234630408291366058854572643863070724411232471567917931021640290699367652945}{1017437683782216509295199163240217892817033912035336081677706769008022256327467231606536834526525193944} a^{9} - \frac{86228381318803767557722773852689298385765324877229836822123148388242579374562262426992459546157910687}{254359420945554127323799790810054473204258478008834020419426692252005564081866807901634208631631298486} a^{8} + \frac{28894193972350041162292472325999769028513471714351632410530948400580263639034682148496650984717862185}{254359420945554127323799790810054473204258478008834020419426692252005564081866807901634208631631298486} a^{7} - \frac{12180422821930589776165524207667458119272118256925899671308119148823348573963819618494197738409726352}{127179710472777063661899895405027236602129239004417010209713346126002782040933403950817104315815649243} a^{6} + \frac{120916869559345597646853564513193563583165978818879383242699161456590116377547970629285500905208313099}{254359420945554127323799790810054473204258478008834020419426692252005564081866807901634208631631298486} a^{5} - \frac{270928376471069586761469717260498681434278401409171870322526524155109914379219397881699877508949002545}{1017437683782216509295199163240217892817033912035336081677706769008022256327467231606536834526525193944} a^{4} + \frac{433811106776950575100538935914403442645376174488134459137825547875996305290411381441886327071757717431}{1017437683782216509295199163240217892817033912035336081677706769008022256327467231606536834526525193944} a^{3} + \frac{64144554287236012274231204285603095221687136040416920318083564416063176556390962039305066421160184551}{1017437683782216509295199163240217892817033912035336081677706769008022256327467231606536834526525193944} a^{2} + \frac{99480928886357658910854534821868343998230026932667547620786838382042176263603653354733045599870244115}{1017437683782216509295199163240217892817033912035336081677706769008022256327467231606536834526525193944} a - \frac{37347466308064407957649068021412488464268691568805647805088073659393310532404356233132775049887297191}{1017437683782216509295199163240217892817033912035336081677706769008022256327467231606536834526525193944}$
Class group and class number
$C_{8}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 37285833957300000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_8$ (as 16T104):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $C_2^3.C_8$ |
| Character table for $C_2^3.C_8$ is not computed |
Intermediate fields
| \(\Q(\sqrt{73}) \), 4.4.1447532257.1, 8.8.569166107419034447672017.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | $16$ | $16$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | $16$ | $16$ | $16$ | $16$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $61$ | 61.8.7.3 | $x^{8} + 122$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 61.8.7.3 | $x^{8} + 122$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| 73 | Data not computed | ||||||