Normalized defining polynomial
\( x^{16} - 4 x^{15} - 29 x^{14} + 9025 x^{13} - 564592 x^{12} + 600723 x^{11} + 106534135 x^{10} - 2295493716 x^{9} + 41697009299 x^{8} + 210269586483 x^{7} - 8329715762855 x^{6} + 42632626532812 x^{5} - 69676368352736 x^{4} - 258874459402297 x^{3} + 945131876919130 x^{2} - 148420382825981 x - 2223621705617209 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(87995526059768479187762363921103601182604493355285937=61^{14}\cdot 73^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2037.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{10} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a$, $\frac{1}{249185192636533015048} a^{14} - \frac{11795844862529787331}{249185192636533015048} a^{13} - \frac{18426852839432169245}{249185192636533015048} a^{12} - \frac{20702376403672048661}{249185192636533015048} a^{11} + \frac{823455851606631010}{31148149079566626881} a^{10} + \frac{2340350703263183897}{62296298159133253762} a^{9} + \frac{13570988715968295467}{249185192636533015048} a^{8} - \frac{25508556514340060553}{249185192636533015048} a^{7} - \frac{774040338437123281}{249185192636533015048} a^{6} - \frac{29218379394007017617}{249185192636533015048} a^{5} + \frac{50723399532939410109}{249185192636533015048} a^{4} - \frac{18615488410234880159}{124592596318266507524} a^{3} - \frac{39336030145098948831}{249185192636533015048} a^{2} + \frac{24892599044727333055}{124592596318266507524} a - \frac{122182444145571695785}{249185192636533015048}$, $\frac{1}{723735345101171730400515351953229064845809013490461808151933746983772635337297770917659853495780344} a^{15} + \frac{172751943086764075542312371636306753140106575004468956726919460617737496300813}{361867672550585865200257675976614532422904506745230904075966873491886317668648885458829926747890172} a^{14} + \frac{21924115310222229565073822331231013261454867889678386044140648775898633316473883394250879839450045}{180933836275292932600128837988307266211452253372615452037983436745943158834324442729414963373945086} a^{13} + \frac{38305528717751156164714960824437659159566120515837665324141184392198535215706800640871933041239573}{361867672550585865200257675976614532422904506745230904075966873491886317668648885458829926747890172} a^{12} + \frac{169357712845339352025980961551727987691931414070611367693408855782667624742167061808498551454772647}{723735345101171730400515351953229064845809013490461808151933746983772635337297770917659853495780344} a^{11} - \frac{40712440374485507695339690714748703863839309994038260456125007910069119138936979613491748755943909}{180933836275292932600128837988307266211452253372615452037983436745943158834324442729414963373945086} a^{10} + \frac{347956178655353465431857031156495729602654308481721877642099310104591229966029660462848746723315575}{723735345101171730400515351953229064845809013490461808151933746983772635337297770917659853495780344} a^{9} - \frac{159529599927771119344038367177884769068799193483672085732457923141320145465359347476359952984412001}{361867672550585865200257675976614532422904506745230904075966873491886317668648885458829926747890172} a^{8} + \frac{6232942559717775188221489665748773587878260195923648872757225338048256299743690570989026888368653}{361867672550585865200257675976614532422904506745230904075966873491886317668648885458829926747890172} a^{7} - \frac{136056702491482905019367961236221965143751805660009441035350046285207957437416748012378929100944915}{361867672550585865200257675976614532422904506745230904075966873491886317668648885458829926747890172} a^{6} - \frac{24274481904447329914706699994159273878115469913093882157617274554814405397797425134480786946030043}{90466918137646466300064418994153633105726126686307726018991718372971579417162221364707481686972543} a^{5} + \frac{55936658338687518920517140558509418321830646251503059906525939485871106509704618237825191305659131}{723735345101171730400515351953229064845809013490461808151933746983772635337297770917659853495780344} a^{4} + \frac{357995728173246980881128524423854861580172094546127696287729356304003553140266272532329015338442075}{723735345101171730400515351953229064845809013490461808151933746983772635337297770917659853495780344} a^{3} + \frac{261183644041264426782949618684471257794555073194709611530045419881942124308106923794780686516984931}{723735345101171730400515351953229064845809013490461808151933746983772635337297770917659853495780344} a^{2} - \frac{154032688816853592090736160910085617388994111545322898356968971326611541290422516607921275702587243}{723735345101171730400515351953229064845809013490461808151933746983772635337297770917659853495780344} a + \frac{356893918295583046721231941316893292588885471172049742363626561448608848909945596655195634237078547}{723735345101171730400515351953229064845809013490461808151933746983772635337297770917659853495780344}$
Class group and class number
$C_{8}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 33165263323100000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_8$ (as 16T104):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $C_2^3.C_8$ |
| Character table for $C_2^3.C_8$ is not computed |
Intermediate fields
| \(\Q(\sqrt{73}) \), 4.4.1447532257.1, 8.8.569166107419034447672017.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | $16$ | $16$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{16}$ | $16$ | $16$ | $16$ | $16$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $61$ | 61.8.7.4 | $x^{8} + 488$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 61.8.7.4 | $x^{8} + 488$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| 73 | Data not computed | ||||||