Normalized defining polynomial
\( x^{16} - 6 x^{15} - 68 x^{14} + 216 x^{13} + 1992 x^{12} + 5230 x^{11} - 80068 x^{10} + 163132 x^{9} + 1105782 x^{8} - 10260945 x^{7} - 28171423 x^{6} + 192753639 x^{5} + 977105421 x^{4} - 4184728814 x^{3} - 15831634490 x^{2} + 57264732095 x + 167363472977 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8767895277848913089642817986417897713=61^{4}\cdot 97^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $203.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{8474380186686225413136712491532172063980897460991965233651349782758897811} a^{15} - \frac{841386551308482227258332193816513405092818845275094528488951045757464586}{8474380186686225413136712491532172063980897460991965233651349782758897811} a^{14} - \frac{1904524414330082085829305117273344063869860018993416067025491156879923517}{8474380186686225413136712491532172063980897460991965233651349782758897811} a^{13} - \frac{3852881890703457996174026281518173275383908420442077255838201684074642620}{8474380186686225413136712491532172063980897460991965233651349782758897811} a^{12} - \frac{242825265901550485635023672873063631039604607360736157209298333701691661}{8474380186686225413136712491532172063980897460991965233651349782758897811} a^{11} - \frac{850810161935494302295865535207345031351036453870419082131107252367751902}{8474380186686225413136712491532172063980897460991965233651349782758897811} a^{10} - \frac{2209523381152897588929040503073463546608951939909324868861708176206457290}{8474380186686225413136712491532172063980897460991965233651349782758897811} a^{9} - \frac{436287410286221387563413994444405300027016766703105798117507076183571443}{8474380186686225413136712491532172063980897460991965233651349782758897811} a^{8} + \frac{3883575520199765952157022680444527250873240069970058655956095725848614935}{8474380186686225413136712491532172063980897460991965233651349782758897811} a^{7} - \frac{3164854879151356016896879944205375084197590160026223705625154549217897552}{8474380186686225413136712491532172063980897460991965233651349782758897811} a^{6} - \frac{2601184998004717528175620127746823037261686829691879663805432972404964263}{8474380186686225413136712491532172063980897460991965233651349782758897811} a^{5} + \frac{1537579042027904298019511494533234653301469170684765111905266089825480892}{8474380186686225413136712491532172063980897460991965233651349782758897811} a^{4} - \frac{997015897628899412468218658489152185712893731190451945496611822659703383}{8474380186686225413136712491532172063980897460991965233651349782758897811} a^{3} - \frac{3977238629161869846739358631826447114918866237228688629470742027174810038}{8474380186686225413136712491532172063980897460991965233651349782758897811} a^{2} + \frac{1841404321777379258156004564183217327965988638649916495219885839027546099}{8474380186686225413136712491532172063980897460991965233651349782758897811} a + \frac{3370812247918963704831916444187317804518168207307786521446446353648835404}{8474380186686225413136712491532172063980897460991965233651349782758897811}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 620760386692 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n841 |
| Character table for t16n841 is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 61 | Data not computed | ||||||
| 97 | Data not computed | ||||||