Normalized defining polynomial
\( x^{16} - 4 x^{15} + 56 x^{14} - 518 x^{13} - 2574 x^{12} - 5750 x^{11} - 114969 x^{10} + 325596 x^{9} + 111047 x^{8} - 1411152 x^{7} + 22961073 x^{6} - 18436972 x^{5} + 104056579 x^{4} - 54294058 x^{3} - 612399080 x^{2} + 499997728 x + 186691984 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8767895277848913089642817986417897713=61^{4}\cdot 97^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $203.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{8} + \frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{13585134578603724751776545345956150440596340804681034600979340869704} a^{15} + \frac{180327964611091963143310913892545910098082410693684565491252811829}{1698141822325465593972068168244518805074542600585129325122417608713} a^{14} - \frac{250794207711833965000434357277754236859046905367155963731449712471}{1698141822325465593972068168244518805074542600585129325122417608713} a^{13} + \frac{618162542609618038436002129356524173357016316458303898242591844891}{6792567289301862375888272672978075220298170402340517300489670434852} a^{12} - \frac{38887009415697061321286792290546186653497481818290028815751185499}{6792567289301862375888272672978075220298170402340517300489670434852} a^{11} + \frac{1308087036071160417589549177724906875723321134196953172178507163299}{6792567289301862375888272672978075220298170402340517300489670434852} a^{10} - \frac{2352715241794078764713237446996719288525336495676705068217596880073}{13585134578603724751776545345956150440596340804681034600979340869704} a^{9} - \frac{350398777804143361543461513830917002541785851737096312675523204892}{1698141822325465593972068168244518805074542600585129325122417608713} a^{8} - \frac{2179826251256888160979339105526848263852983881249474871086700651897}{13585134578603724751776545345956150440596340804681034600979340869704} a^{7} + \frac{267464529911365584800164432272047744174813781251137221014500071703}{1698141822325465593972068168244518805074542600585129325122417608713} a^{6} - \frac{5727574294016753739669658431693785654887619004627294682125914825283}{13585134578603724751776545345956150440596340804681034600979340869704} a^{5} + \frac{1050195910705073200162930171050414152418932099269318479782804143101}{3396283644650931187944136336489037610149085201170258650244835217426} a^{4} + \frac{2334983073991786823098729824319076298981496477024148785179649163963}{13585134578603724751776545345956150440596340804681034600979340869704} a^{3} - \frac{1474478681113539235260428157326572732702944091654177161687356566241}{6792567289301862375888272672978075220298170402340517300489670434852} a^{2} + \frac{309223311088910426427689949364271903559704796090704441565283964539}{1698141822325465593972068168244518805074542600585129325122417608713} a - \frac{775328103792952116039597280230671050449488775600070256283783354908}{1698141822325465593972068168244518805074542600585129325122417608713}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 792607167618 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 40 conjugacy class representatives for t16n1223 |
| Character table for t16n1223 is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | $16$ | $16$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | $16$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 61 | Data not computed | ||||||
| 97 | Data not computed | ||||||